PHP Classes

File: node/server.js

Recommend this page to a friend!
  Classes of Ej Corpuz   Auto Weibo Crawler   node/server.js   Download  
File: node/server.js
Role: Auxiliary data
Content type: text/plain
Description: Auxiliary data
Class: Auto Weibo Crawler
Scrape and parse pages of the Weibo site profiles
Author: By
Last change: Update of node/server.js
Date: 4 months ago
Size: 34,391 bytes
 

Contents

Class file image Download
var http = require('http'); http.createServer(function(req, res) { res.writeHead(200, { 'Content-Type' : 'text/plain' }); var url = require('url'); var url_parts = url.parse(req.url, true); var query = url_parts.query; if (query['pwd'] && query['servicetime'] && query['nonce'] && query['rsapubkey']) { var currentTime = Date.now() || +new Date(); var hp = getpass(query['pwd'], query['servicetime'], query['nonce'], query['rsapubkey']); res.end(hp); console.log('Time: ' + currentTime + ' - Request Hash From: ' + req.connection.remoteAddress + ' - Result: ' + hp + ';end;'); } else { res.end("false"); } }).listen(1337, '127.0.0.1'); console.log('Server running at http://127.0.0.1:1337/'); function getpass(pwd, servicetime, nonce, rsaPubkey) { var RSAKey = new sinaSSOEncoder.RSAKey(); RSAKey.setPublic(rsaPubkey, '10001'); var password = RSAKey.encrypt([servicetime, nonce].join('\t') + '\n' + pwd); //document.write(password); return password; } /* function for encoding password */ var sinaSSOEncoder = sinaSSOEncoder || {}; (function() { /* * Configurable variables. You may need to tweak these to be compatible with * the server-side, but the defaults work in most cases. */ var hexcase = 0; /* hex output format. 0 - lowercase; 1 - uppercase */ var chrsz = 8; /* bits per input character. 8 - ASCII; 16 - Unicode */ /* * These are the functions you'll usually want to call * They take string arguments and return either hex or base-64 encoded strings */ this.hex_sha1 = function(s) { return binb2hex(core_sha1(str2binb(s), s.length * chrsz)); }; /* * Calculate the SHA-1 of an array of big-endian words, and a bit length */ var core_sha1 = function(x, len) { /* append padding */ x[len >> 5] |= 0x80 << (24 - len % 32); x[((len + 64 >> 9) << 4) + 15] = len; var w = Array(80); var a = 1732584193; var b = -271733879; var c = -1732584194; var d = 271733878; var e = -1009589776; for (var i = 0; i < x.length; i += 16) { var olda = a; var oldb = b; var oldc = c; var oldd = d; var olde = e; for (var j = 0; j < 80; j++) { if (j < 16) w[j] = x[i + j]; else w[j] = rol(w[j - 3] ^ w[j - 8] ^ w[j - 14] ^ w[j - 16], 1); var t = safe_add(safe_add(rol(a, 5), sha1_ft(j, b, c, d)), safe_add(safe_add(e, w[j]), sha1_kt(j))); e = d; d = c; c = rol(b, 30); b = a; a = t; } a = safe_add(a, olda); b = safe_add(b, oldb); c = safe_add(c, oldc); d = safe_add(d, oldd); e = safe_add(e, olde); } return Array(a, b, c, d, e); }; /* * Perform the appropriate triplet combination function for the current * iteration */ var sha1_ft = function(t, b, c, d) { if (t < 20) return (b & c) | ((~b) & d); if (t < 40) return b ^ c ^ d; if (t < 60) return (b & c) | (b & d) | (c & d); return b ^ c ^ d; }; /* * Determine the appropriate additive constant for the current iteration */ var sha1_kt = function(t) { return (t < 20) ? 1518500249 : (t < 40) ? 1859775393 : (t < 60) ? -1894007588 : -899497514; }; /* * Add integers, wrapping at 2^32. This uses 16-bit operations internally * to work around bugs in some JS interpreters. */ var safe_add = function(x, y) { var lsw = (x & 0xFFFF) + (y & 0xFFFF); var msw = (x >> 16) + (y >> 16) + (lsw >> 16); return (msw << 16) | (lsw & 0xFFFF); }; /* * Bitwise rotate a 32-bit number to the left. */ var rol = function(num, cnt) { return (num << cnt) | (num >>> (32 - cnt)); }; /* * Convert an 8-bit or 16-bit string to an array of big-endian words * In 8-bit function, characters >255 have their hi-byte silently ignored. */ var str2binb = function(str) { var bin = Array(); var mask = (1 << chrsz) - 1; for (var i = 0; i < str.length * chrsz; i += chrsz) bin[i >> 5] |= (str.charCodeAt(i / chrsz) & mask) << (24 - i % 32); return bin; }; /* * Convert an array of big-endian words to a hex string. */ var binb2hex = function(binarray) { var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef"; var str = ""; for (var i = 0; i < binarray.length * 4; i++) { str += hex_tab.charAt((binarray[i >> 2] >> ((3 - i % 4) * 8 + 4)) & 0xF) + hex_tab.charAt((binarray[i >> 2] >> ((3 - i % 4) * 8)) & 0xF); } return str; }; /* * Convert a string into a base 64 encoded string */ this.base64 = { encode : function(input) { input = "" + input; // Convert to string for encode if (input == "") return ""; var output = ''; var chr1, chr2, chr3 = ''; var enc1, enc2, enc3, enc4 = ''; var i = 0; do { chr1 = input.charCodeAt(i++); chr2 = input.charCodeAt(i++); chr3 = input.charCodeAt(i++); enc1 = chr1 >> 2; enc2 = ((chr1 & 3) << 4) | (chr2 >> 4); enc3 = ((chr2 & 15) << 2) | (chr3 >> 6); enc4 = chr3 & 63; if (isNaN(chr2)) { enc3 = enc4 = 64; } else if (isNaN(chr3)) { enc4 = 64; } output = output + this._keys.charAt(enc1) + this._keys.charAt(enc2) + this._keys.charAt(enc3) + this._keys.charAt(enc4); chr1 = chr2 = chr3 = ''; enc1 = enc2 = enc3 = enc4 = ''; } while (i < input.length); return output; }, _keys : 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=' }; }).call(sinaSSOEncoder); //RSA ; (function() { /********************* jsbn.js start ************************/ // Copyright (c) 2005 Tom Wu // All Rights Reserved. // See "LICENSE" for details. // Basic JavaScript BN library - subset useful for RSA encryption. // Bits per digit var dbits; // JavaScript engine analysis var canary = 0xdeadbeefcafe; var j_lm = ((canary & 0xffffff) == 0xefcafe); // (public) Constructor function BigInteger(a, b, c) { if (a != null) if ("number" == typeof a) this.fromNumber(a, b, c); else if (b == null && "string" != typeof a) this.fromString(a, 256); else this.fromString(a, b); } // return new, unset BigInteger function nbi() { return new BigInteger(null); } // am: Compute w_j += (x*this_i), propagate carries, // c is initial carry, returns final carry. // c < 3*dvalue, x < 2*dvalue, this_i < dvalue // We need to select the fastest one that works in this environment. // am1: use a single mult and divide to get the high bits, // max digit bits should be 26 because // max internal value = 2*dvalue^2-2*dvalue (< 2^53) function am1(i, x, w, j, c, n) { while (--n >= 0) { var v = x * this[i++] + w[j] + c; c = Math.floor(v / 0x4000000); w[j++] = v & 0x3ffffff; } return c; } // am2 avoids a big mult-and-extract completely. // Max digit bits should be <= 30 because we do bitwise ops // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31) function am2(i, x, w, j, c, n) { var xl = x & 0x7fff, xh = x >> 15; while (--n >= 0) { var l = this[i] & 0x7fff; var h = this[i++] >> 15; var m = xh * l + h * xl; l = xl * l + ((m & 0x7fff) << 15) + w[j] + (c & 0x3fffffff); c = (l >>> 30) + (m >>> 15) + xh * h + (c >>> 30); w[j++] = l & 0x3fffffff; } return c; } // Alternately, set max digit bits to 28 since some // browsers slow down when dealing with 32-bit numbers. function am3(i, x, w, j, c, n) { var xl = x & 0x3fff, xh = x >> 14; while (--n >= 0) { var l = this[i] & 0x3fff; var h = this[i++] >> 14; var m = xh * l + h * xl; l = xl * l + ((m & 0x3fff) << 14) + w[j] + c; c = (l >> 28) + (m >> 14) + xh * h; w[j++] = l & 0xfffffff; } return c; } // Mozilla/Netscape seems to prefer am3 BigInteger.prototype.am = am3; dbits = 28; BigInteger.prototype.DB = dbits; BigInteger.prototype.DM = ((1 << dbits) - 1); BigInteger.prototype.DV = (1 << dbits); var BI_FP = 52; BigInteger.prototype.FV = Math.pow(2, BI_FP); BigInteger.prototype.F1 = BI_FP - dbits; BigInteger.prototype.F2 = 2 * dbits - BI_FP; // Digit conversions var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz"; var BI_RC = new Array(); var rr, vv; rr = "0".charCodeAt(0); for ( vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv; rr = "a".charCodeAt(0); for ( vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; rr = "A".charCodeAt(0); for ( vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; function int2char(n) { return BI_RM.charAt(n); } function intAt(s, i) { var c = BI_RC[s.charCodeAt(i)]; return (c == null) ? -1 : c; } // (protected) copy this to r function bnpCopyTo(r) { for (var i = this.t - 1; i >= 0; --i) r[i] = this[i]; r.t = this.t; r.s = this.s; } // (protected) set from integer value x, -DV <= x < DV function bnpFromInt(x) { this.t = 1; this.s = (x < 0) ? -1 : 0; if (x > 0) this[0] = x; else if (x < -1) this[0] = x + DV; else this.t = 0; } // return bigint initialized to value function nbv(i) { var r = nbi(); r.fromInt(i); return r; } // (protected) set from string and radix function bnpFromString(s, b) { var k; if (b == 16) k = 4; else if (b == 8) k = 3; else if (b == 256) k = 8; // byte array else if (b == 2) k = 1; else if (b == 32) k = 5; else if (b == 4) k = 2; else { this.fromRadix(s, b); return; } this.t = 0; this.s = 0; var i = s.length, mi = false, sh = 0; while (--i >= 0) { var x = (k == 8) ? s[i] & 0xff : intAt(s, i); if (x < 0) { if (s.charAt(i) == "-") mi = true; continue; } mi = false; if (sh == 0) this[this.t++] = x; else if (sh + k > this.DB) { this[this.t - 1] |= (x & ((1 << (this.DB - sh)) - 1)) << sh; this[this.t++] = (x >> (this.DB - sh)); } else this[this.t - 1] |= x << sh; sh += k; if (sh >= this.DB) sh -= this.DB; } if (k == 8 && (s[0] & 0x80) != 0) { this.s = -1; if (sh > 0) this[this.t - 1] |= ((1 << (this.DB - sh)) - 1) << sh; } this.clamp(); if (mi) BigInteger.ZERO.subTo(this, this); } // (protected) clamp off excess high words function bnpClamp() { var c = this.s & this.DM; while (this.t > 0 && this[this.t - 1] == c)--this.t; } // (public) return string representation in given radix function bnToString(b) { if (this.s < 0) return "-" + this.negate().toString(b); var k; if (b == 16) k = 4; else if (b == 8) k = 3; else if (b == 2) k = 1; else if (b == 32) k = 5; else if (b == 4) k = 2; else return this.toRadix(b); var km = (1 << k) - 1, d, m = false, r = "", i = this.t; var p = this.DB - (i * this.DB) % k; if (i-- > 0) { if (p < this.DB && ( d = this[i] >> p) > 0) { m = true; r = int2char(d); } while (i >= 0) { if (p < k) { d = (this[i] & ((1 << p) - 1)) << (k - p); d |= this[--i] >> (p += this.DB - k); } else { d = (this[i] >> (p -= k)) & km; if (p <= 0) { p += this.DB; --i; } } if (d > 0) m = true; if (m) r += int2char(d); } } return m ? r : "0"; } // (public) -this function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this, r); return r; } // (public) |this| function bnAbs() { return (this.s < 0) ? this.negate() : this; } // (public) return + if this > a, - if this < a, 0 if equal function bnCompareTo(a) { var r = this.s - a.s; if (r != 0) return r; var i = this.t; r = i - a.t; if (r != 0) return r; while (--i >= 0) if (( r = this[i] - a[i]) != 0) return r; return 0; } // returns bit length of the integer x function nbits(x) { var r = 1, t; if (( t = x >>> 16) != 0) { x = t; r += 16; } if (( t = x >> 8) != 0) { x = t; r += 8; } if (( t = x >> 4) != 0) { x = t; r += 4; } if (( t = x >> 2) != 0) { x = t; r += 2; } if (( t = x >> 1) != 0) { x = t; r += 1; } return r; } // (public) return the number of bits in "this" function bnBitLength() { if (this.t <= 0) return 0; return this.DB * (this.t - 1) + nbits(this[this.t - 1] ^ (this.s & this.DM)); } // (protected) r = this << n*DB function bnpDLShiftTo(n, r) { var i; for ( i = this.t - 1; i >= 0; --i) r[i + n] = this[i]; for ( i = n - 1; i >= 0; --i) r[i] = 0; r.t = this.t + n; r.s = this.s; } // (protected) r = this >> n*DB function bnpDRShiftTo(n, r) { for (var i = n; i < this.t; ++i) r[i - n] = this[i]; r.t = Math.max(this.t - n, 0); r.s = this.s; } // (protected) r = this << n function bnpLShiftTo(n, r) { var bs = n % this.DB; var cbs = this.DB - bs; var bm = (1 << cbs) - 1; var ds = Math.floor(n / this.DB), c = (this.s << bs) & this.DM, i; for ( i = this.t - 1; i >= 0; --i) { r[i + ds + 1] = (this[i] >> cbs) | c; c = (this[i] & bm) << bs; } for ( i = ds - 1; i >= 0; --i) r[i] = 0; r[ds] = c; r.t = this.t + ds + 1; r.s = this.s; r.clamp(); } // (protected) r = this >> n function bnpRShiftTo(n, r) { r.s = this.s; var ds = Math.floor(n / this.DB); if (ds >= this.t) { r.t = 0; return; } var bs = n % this.DB; var cbs = this.DB - bs; var bm = (1 << bs) - 1; r[0] = this[ds] >> bs; for (var i = ds + 1; i < this.t; ++i) { r[i - ds - 1] |= (this[i] & bm) << cbs; r[i - ds] = this[i] >> bs; } if (bs > 0) r[this.t - ds - 1] |= (this.s & bm) << cbs; r.t = this.t - ds; r.clamp(); } // (protected) r = this - a function bnpSubTo(a, r) { var i = 0, c = 0, m = Math.min(a.t, this.t); while (i < m) { c += this[i] - a[i]; r[i++] = c & this.DM; c >>= this.DB; } if (a.t < this.t) { c -= a.s; while (i < this.t) { c += this[i]; r[i++] = c & this.DM; c >>= this.DB; } c += this.s; } else { c += this.s; while (i < a.t) { c -= a[i]; r[i++] = c & this.DM; c >>= this.DB; } c -= a.s; } r.s = (c < 0) ? -1 : 0; if (c < -1) r[i++] = this.DV + c; else if (c > 0) r[i++] = c; r.t = i; r.clamp(); } // (protected) r = this * a, r != this,a (HAC 14.12) // "this" should be the larger one if appropriate. function bnpMultiplyTo(a, r) { var x = this.abs(), y = a.abs(); var i = x.t; r.t = i + y.t; while (--i >= 0) r[i] = 0; for ( i = 0; i < y.t; ++i) r[i + x.t] = x.am(0, y[i], r, i, 0, x.t); r.s = 0; r.clamp(); if (this.s != a.s) BigInteger.ZERO.subTo(r, r); } // (protected) r = this^2, r != this (HAC 14.16) function bnpSquareTo(r) { var x = this.abs(); var i = r.t = 2 * x.t; while (--i >= 0) r[i] = 0; for ( i = 0; i < x.t - 1; ++i) { var c = x.am(i, x[i], r, 2 * i, 0, 1); if ((r[i + x.t] += x.am(i + 1, 2 * x[i], r, 2 * i + 1, c, x.t - i - 1)) >= x.DV) { r[i + x.t] -= x.DV; r[i + x.t + 1] = 1; } } if (r.t > 0) r[r.t - 1] += x.am(i, x[i], r, 2 * i, 0, 1); r.s = 0; r.clamp(); } // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20) // r != q, this != m. q or r may be null. function bnpDivRemTo(m, q, r) { var pm = m.abs(); if (pm.t <= 0) return; var pt = this.abs(); if (pt.t < pm.t) { if (q != null) q.fromInt(0); if (r != null) this.copyTo(r); return; } if (r == null) r = nbi(); var y = nbi(), ts = this.s, ms = m.s; var nsh = this.DB - nbits(pm[pm.t - 1]); // normalize modulus if (nsh > 0) { pm.lShiftTo(nsh, y); pt.lShiftTo(nsh, r); } else { pm.copyTo(y); pt.copyTo(r); } var ys = y.t; var y0 = y[ys - 1]; if (y0 == 0) return; var yt = y0 * (1 << this.F1) + ((ys > 1) ? y[ys - 2] >> this.F2 : 0); var d1 = this.FV / yt, d2 = (1 << this.F1) / yt, e = 1 << this.F2; var i = r.t, j = i - ys, t = (q == null) ? nbi() : q; y.dlShiftTo(j, t); if (r.compareTo(t) >= 0) { r[r.t++] = 1; r.subTo(t, r); } BigInteger.ONE.dlShiftTo(ys, t); t.subTo(y, y); // "negative" y so we can replace sub with am later while (y.t < ys) y[y.t++] = 0; while (--j >= 0) { // Estimate quotient digit var qd = (r[--i] == y0) ? this.DM : Math.floor(r[i] * d1 + (r[i - 1] + e) * d2); if ((r[i] += y.am(0, qd, r, j, 0, ys)) < qd) {// Try it out y.dlShiftTo(j, t); r.subTo(t, r); while (r[i] < --qd) r.subTo(t, r); } } if (q != null) { r.drShiftTo(ys, q); if (ts != ms) BigInteger.ZERO.subTo(q, q); } r.t = ys; r.clamp(); if (nsh > 0) r.rShiftTo(nsh, r); // Denormalize remainder if (ts < 0) BigInteger.ZERO.subTo(r, r); } // (public) this mod a function bnMod(a) { var r = nbi(); this.abs().divRemTo(a, null, r); if (this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r, r); return r; } // Modular reduction using "classic" algorithm function Classic(m) { this.m = m; } function cConvert(x) { if (x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m); else return x; } function cRevert(x) { return x; } function cReduce(x) { x.divRemTo(this.m, null, x); } function cMulTo(x, y, r) { x.multiplyTo(y, r); this.reduce(r); } function cSqrTo(x, r) { x.squareTo(r); this.reduce(r); } Classic.prototype.convert = cConvert; Classic.prototype.revert = cRevert; Classic.prototype.reduce = cReduce; Classic.prototype.mulTo = cMulTo; Classic.prototype.sqrTo = cSqrTo; // (protected) return "-1/this % 2^DB"; useful for Mont. reduction // justification: // xy == 1 (mod m) // xy = 1+km // xy(2-xy) = (1+km)(1-km) // x[y(2-xy)] = 1-k^2m^2 // x[y(2-xy)] == 1 (mod m^2) // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2 // should reduce x and y(2-xy) by m^2 at each step to keep size bounded. // JS multiply "overflows" differently from C/C++, so care is needed here. function bnpInvDigit() { if (this.t < 1) return 0; var x = this[0]; if ((x & 1) == 0) return 0; var y = x & 3; // y == 1/x mod 2^2 y = (y * (2 - (x & 0xf) * y)) & 0xf; // y == 1/x mod 2^4 y = (y * (2 - (x & 0xff) * y)) & 0xff; // y == 1/x mod 2^8 y = (y * (2 - (((x & 0xffff) * y) & 0xffff))) & 0xffff; // y == 1/x mod 2^16 // last step - calculate inverse mod DV directly; // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints y = (y * (2 - x * y % this.DV)) % this.DV; // y == 1/x mod 2^dbits // we really want the negative inverse, and -DV < y < DV return (y > 0) ? this.DV - y : -y; } // Montgomery reduction function Montgomery(m) { this.m = m; this.mp = m.invDigit(); this.mpl = this.mp & 0x7fff; this.mph = this.mp >> 15; this.um = (1 << (m.DB - 15)) - 1; this.mt2 = 2 * m.t; } // xR mod m function montConvert(x) { var r = nbi(); x.abs().dlShiftTo(this.m.t, r); r.divRemTo(this.m, null, r); if (x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r, r); return r; } // x/R mod m function montRevert(x) { var r = nbi(); x.copyTo(r); this.reduce(r); return r; } // x = x/R mod m (HAC 14.32) function montReduce(x) { while (x.t <= this.mt2)// pad x so am has enough room later x[x.t++] = 0; for (var i = 0; i < this.m.t; ++i) { // faster way of calculating u0 = x[i]*mp mod DV var j = x[i] & 0x7fff; var u0 = (j * this.mpl + (((j * this.mph + (x[i] >> 15) * this.mpl) & this.um) << 15)) & x.DM; // use am to combine the multiply-shift-add into one call j = i + this.m.t; x[j] += this.m.am(0, u0, x, i, 0, this.m.t); // propagate carry while (x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; } } x.clamp(); x.drShiftTo(this.m.t, x); if (x.compareTo(this.m) >= 0) x.subTo(this.m, x); } // r = "x^2/R mod m"; x != r function montSqrTo(x, r) { x.squareTo(r); this.reduce(r); } // r = "xy/R mod m"; x,y != r function montMulTo(x, y, r) { x.multiplyTo(y, r); this.reduce(r); } Montgomery.prototype.convert = montConvert; Montgomery.prototype.revert = montRevert; Montgomery.prototype.reduce = montReduce; Montgomery.prototype.mulTo = montMulTo; Montgomery.prototype.sqrTo = montSqrTo; // (protected) true iff this is even function bnpIsEven() { return ((this.t > 0) ? (this[0] & 1) : this.s) == 0; } // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79) function bnpExp(e, z) { if (e > 0xffffffff || e < 1) return BigInteger.ONE; var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e) - 1; g.copyTo(r); while (--i >= 0) { z.sqrTo(r, r2); if ((e & (1 << i)) > 0) z.mulTo(r2, g, r); else { var t = r; r = r2; r2 = t; } } return z.revert(r); } // (public) this^e % m, 0 <= e < 2^32 function bnModPowInt(e, m) { var z; if (e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m); return this.exp(e, z); } // protected BigInteger.prototype.copyTo = bnpCopyTo; BigInteger.prototype.fromInt = bnpFromInt; BigInteger.prototype.fromString = bnpFromString; BigInteger.prototype.clamp = bnpClamp; BigInteger.prototype.dlShiftTo = bnpDLShiftTo; BigInteger.prototype.drShiftTo = bnpDRShiftTo; BigInteger.prototype.lShiftTo = bnpLShiftTo; BigInteger.prototype.rShiftTo = bnpRShiftTo; BigInteger.prototype.subTo = bnpSubTo; BigInteger.prototype.multiplyTo = bnpMultiplyTo; BigInteger.prototype.squareTo = bnpSquareTo; BigInteger.prototype.divRemTo = bnpDivRemTo; BigInteger.prototype.invDigit = bnpInvDigit; BigInteger.prototype.isEven = bnpIsEven; BigInteger.prototype.exp = bnpExp; // public BigInteger.prototype.toString = bnToString; BigInteger.prototype.negate = bnNegate; BigInteger.prototype.abs = bnAbs; BigInteger.prototype.compareTo = bnCompareTo; BigInteger.prototype.bitLength = bnBitLength; BigInteger.prototype.mod = bnMod; BigInteger.prototype.modPowInt = bnModPowInt; // "constants" BigInteger.ZERO = nbv(0); BigInteger.ONE = nbv(1); /********************* jsbn.js end ************************/ /********************* prng4.js start ************************/ // prng4.js - uses Arcfour as a PRNG function Arcfour() { this.i = 0; this.j = 0; this.S = new Array(); } // Initialize arcfour context from key, an array of ints, each from [0..255] function ARC4init(key) { var i, j, t; for ( i = 0; i < 256; ++i) this.S[i] = i; j = 0; for ( i = 0; i < 256; ++i) { j = (j + this.S[i] + key[i % key.length]) & 255; t = this.S[i]; this.S[i] = this.S[j]; this.S[j] = t; } this.i = 0; this.j = 0; } function ARC4next() { var t; this.i = (this.i + 1) & 255; this.j = (this.j + this.S[this.i]) & 255; t = this.S[this.i]; this.S[this.i] = this.S[this.j]; this.S[this.j] = t; return this.S[(t + this.S[this.i]) & 255]; } Arcfour.prototype.init = ARC4init; Arcfour.prototype.next = ARC4next; // Plug in your RNG constructor here function prng_newstate() { return new Arcfour(); } // Pool size must be a multiple of 4 and greater than 32. // An array of bytes the size of the pool will be passed to init() var rng_psize = 256; /********************* prng4.js end ************************/ /********************* rng.js start ************************/ // Random number generator - requires a PRNG backend, e.g. prng4.js // For best results, put code like // <body onClick='rng_seed_time();' onKeyPress='rng_seed_time();'> // in your main HTML document. var rng_state; var rng_pool; var rng_pptr; // Mix in a 32-bit integer into the pool function rng_seed_int(x) { rng_pool[rng_pptr++] ^=x & 255; rng_pool[rng_pptr++] ^=(x >> 8) & 255; rng_pool[rng_pptr++] ^=(x >> 16) & 255; rng_pool[rng_pptr++] ^=(x >> 24) & 255; if (rng_pptr >= rng_psize) rng_pptr -= rng_psize; } // Mix in the current time (w/milliseconds) into the pool function rng_seed_time() { rng_seed_int(new Date().getTime()); } // Initialize the pool with junk if needed. if (rng_pool == null) { rng_pool = new Array(); rng_pptr = 0; var t; while (rng_pptr < rng_psize) {// extract some randomness from Math.random() t = Math.floor(65536 * Math.random()); rng_pool[rng_pptr++] = t >>> 8; rng_pool[rng_pptr++] = t & 255; } rng_pptr = 0; rng_seed_time(); //rng_seed_int(window.screenX); //rng_seed_int(window.screenY); } function rng_get_byte() { if (rng_state == null) { rng_seed_time(); rng_state = prng_newstate(); rng_state.init(rng_pool); for ( rng_pptr = 0; rng_pptr < rng_pool.length; ++rng_pptr) rng_pool[rng_pptr] = 0; rng_pptr = 0; //rng_pool = null; } // TODO: allow reseeding after first request return rng_state.next(); } function rng_get_bytes(ba) { var i; for ( i = 0; i < ba.length; ++i) ba[i] = rng_get_byte(); } function SecureRandom() { } SecureRandom.prototype.nextBytes = rng_get_bytes; /********************* rng.js end ************************/ /********************* rsa.js start ************************/ // Depends on jsbn.js and rng.js // Version 1.1: support utf-8 encoding in pkcs1pad2 // convert a (hex) string to a bignum object function parseBigInt(str, r) { return new BigInteger(str, r); } function linebrk(s, n) { var ret = ""; var i = 0; while (i + n < s.length) { ret += s.substring(i, i + n) + "\n"; i += n; } return ret + s.substring(i, s.length); } function byte2Hex(b) { if (b < 0x10) return "0" + b.toString(16); else return b.toString(16); } // PKCS#1 (type 2, random) pad input string s to n bytes, and return a bigint function pkcs1pad2(s, n) { if (n < s.length + 11) {// TODO: fix for utf-8 return ("Message too long for RSA"); return null; } var ba = new Array(); var i = s.length - 1; while (i >= 0 && n > 0) { var c = s.charCodeAt(i--); if (c < 128) {// encode using utf-8 ba[--n] = c; } else if ((c > 127) && (c < 2048)) { ba[--n] = (c & 63) | 128; ba[--n] = (c >> 6) | 192; } else { ba[--n] = (c & 63) | 128; ba[--n] = ((c >> 6) & 63) | 128; ba[--n] = (c >> 12) | 224; } } ba[--n] = 0; var rng = new SecureRandom(); var x = new Array(); while (n > 2) {// random non-zero pad x[0] = 0; while (x[0] == 0) rng.nextBytes(x); ba[--n] = x[0]; } ba[--n] = 2; ba[--n] = 0; return new BigInteger(ba); } // "empty" RSA key constructor function RSAKey() { this.n = null; this.e = 0; this.d = null; this.p = null; this.q = null; this.dmp1 = null; this.dmq1 = null; this.coeff = null; } // Set the public key fields N and e from hex strings function RSASetPublic(N, E) { if (N != null && E != null && N.length > 0 && E.length > 0) { this.n = parseBigInt(N, 16); this.e = parseInt(E, 16); } else return "Invalid RSA public key"; } // Perform raw public operation on "x": return x^e (mod n) function RSADoPublic(x) { return x.modPowInt(this.e, this.n); } // Return the PKCS#1 RSA encryption of "text" as an even-length hex string function RSAEncrypt(text) { var m = pkcs1pad2(text, (this.n.bitLength() + 7) >> 3); if (m == null) return null; var c = this.doPublic(m); if (c == null) return null; var h = c.toString(16); if ((h.length & 1) == 0) return h; else return "0" + h; } // Return the PKCS#1 RSA encryption of "text" as a Base64-encoded string //function RSAEncryptB64(text) { // var h = this.encrypt(text); // if(h) return hex2b64(h); else return null; //}$ // protected RSAKey.prototype.doPublic = RSADoPublic; // public RSAKey.prototype.setPublic = RSASetPublic; RSAKey.prototype.encrypt = RSAEncrypt; //RSAKey.prototype.encrypt_b64 = RSAEncryptB64; //暴露RSAKey this.RSAKey = RSAKey; //example: // var rsa = new RSAKey(); // rsa.setPublic(encode_key, key_plus); // password = rsa.encrypt(password); }).call(sinaSSOEncoder);