PHP Classes

File: TEST/TrainingTest/train_sine.php

Recommend this page to a friend!
  Classes of Cuthbert Martin Lwinga   PHP Neural Net Library   TEST/TrainingTest/train_sine.php   Download  
File: TEST/TrainingTest/train_sine.php
Role: Example script
Content type: text/plain
Description: Example script
Class: PHP Neural Net Library
Build, train, evaluate, and use neural networks
Author: By
Last change:
Date: 10 months ago
Size: 1,991 bytes
 

Contents

Class file image Download
<?PHP

ini_set
('memory_limit', '1024M'); // Increase the memory limit to 1024MB
include_once("../../CLASSES/Headers.php");
use
NameSpaceNumpyLight\NumpyLight;
use
NameSpaceRandomGenerator\RandomGenerator;
use
NameSpaceActivationRelu\Activation_Relu;
use
NameSpaceOptimizerSGD\Optimizer_SGD;
use
NameSpaceOptimizerAdagrad\Optimizer_Adagrad;
use
NameSpaceOptimizerRMSprop\Optimizer_RMSprop;

list(
$X, $y) = NumpyLight::sine_data($samples = 10000);
$validation = NumpyLight::sine_data($samples = 10000);

// Initialize loss function and optimizer
$loss_function = new Loss_MeanSquaredError();
$optimizer = new Optimizer_Adam();


echo
"\n\n Model Init \n\n";
echo
"\n\n? Training on sine wave dataset will commence ?\n\n";

$Model = new Model();
$Model->add(new Layer_Dense(1, 512));
$Model->add(new Activation_ReLU());
$Model->add(new Layer_Dense(512, 512));
$Model->add(new Activation_ReLU());
$Model->add(new Layer_Dense(512, 1));
$Model->add(new Activation_Linear());
$Model->set(
   
$loss_function = new Loss_MeanSquaredError(),
   
$optimizer = new Optimizer_Adam(),
   
$accuracy = new Accuracy_Regression()
);

$Model->finalize();

$Model->train($X, $y,$epoch = 20000, $batch_size = 1000,$print_every = 100,$validation_data = $validation);

list(
$x_test,$y_test) = $validation;

$y_test = NumpyLight::reshape($y_test,[-1,1]);

$flattened_y_test = array_merge(...array_map('array_values', $y_test));
$activation2_y = array_merge(...array_map('array_values', NumpyLight::reshape($Model->output_layer_activation->output,[-1,1])));

$lines = [
    [
       
'yValues' => $flattened_y_test,
       
'color' => 'blue'
   
],
    [
       
'yValues' => $activation2_y,
       
'color' => 'red'
   
]
];


$plotterTemp = new LinePlotter(500, 500);
$plotterTemp->setColor('blue', 0, 0, 255); // Blue color
$plotterTemp->setColor('red', 255, 0, 0); // Blue color

// Plot multiple lines using only y-values
$plotterTemp->plotMultipleLinesWithYOnly($lines);

$plotterTemp->save("test-fit.png");


?>