PHP Classes

File: TEST/TrainingTest/p615.php

Recommend this page to a friend!
  Classes of Cuthbert Martin Lwinga   PHP Neural Net Library   TEST/TrainingTest/p615.php   Download  
File: TEST/TrainingTest/p615.php
Role: Example script
Content type: text/plain
Description: Example script
Class: PHP Neural Net Library
Build, train, evaluate, and use neural networks
Author: By
Last change:
Date: 11 months ago
Size: 3,292 bytes
 

Contents

Class file image Download
<?PHP
ini_set
('memory_limit', '20480M'); // Increase the memory limit to 20480MB (20GB)
include_once("../../CLASSES/Headers.php");
use
NameSpaceNumpyLight\NumpyLight;
use
NameSpaceRandomGenerator\RandomGenerator;
use
NameSpaceActivationRelu\Activation_Relu;
use
NameSpaceOptimizerSGD\Optimizer_SGD;
use
NameSpaceOptimizerAdagrad\Optimizer_Adagrad;
use
NameSpaceOptimizerRMSprop\Optimizer_RMSprop;

function
load_mnist_dataset($dataset, $path) {
   
$labels = [];
   
$dir = $path . '/' . $dataset;
   
   
// Check if the main directory exists and is readable
   
if (is_readable($dir) && ($dir_content = scandir($dir))) {
        foreach (
$dir_content as $item) {
            if (
$item !== '.' && $item !== '..' && is_dir($dir . '/' . $item)) {
               
$labels[] = $item;
            }
        }
    }

   
$X = [];
   
$y = [];

    foreach (
$labels as $label) {
       
$label_path = $dir . '/' . $label;
        if (
is_readable($label_path) && ($files = scandir($label_path))) {
            foreach (
$files as $file) {
                if (
$file !== '.' && $file !== '..') {
                   
$filePath = $label_path . '/' . $file;
                    if (
is_readable($filePath) && !is_dir($filePath)) {
                       
$imageProcessor = new ImageProcessor($filePath);
                       
$imageData = $imageProcessor->getImageGrayscaleArray(["rows" => 28, "cols" => 28]);
                       
$X[] = $imageData;
                       
$y[] = $label;
                    }
                }
            }
        }
    }

    return [
"X" => $X, "y" => $y];
}

function
create_data_mnist($path) {

   
$testData = load_mnist_dataset('test', $path);
   
$X_test = $testData['X'];
   
$y_test = $testData['y'];

   
// And return all the data
   
return [$X_test,$y_test];
}


$mnist_data = create_data_mnist("fashion_mnist_images");

list(
$X_test, $y_test) = $mnist_data;

// $keys = range(0, NumpyLight::shape($X_test)[0] - 1);

NumpyLight::random()->shuffle($keys);

$X_test = NumpyLight::divide(
       
NumpyLight::subtract(
           
NumpyLight::reshape(
               
$X_test,
                [
NumpyLight::shape($X_test)[0],-1])
            ,
           
127.5)
        ,
127.5);

$validation = [$X_test, $y_test];

echo
"\n\nModel Init\n\n";


$Model = Model::load('fashion_mnist_model');


// $Model->evaluate($X_test, $y_test);

$confidences = $Model->predict($X_test);
$predictions = $Model->output_layer_activation->predictions($confidences);

$fashion_mnist_labels = [
   
0 => 'T-shirt/top',
   
1 => 'Trouser',
   
2 => 'Pullover',
   
3 => 'Dress',
   
4 => 'Coat',
   
5 => 'Sandal',
   
6 => 'Shirt',
   
7 => 'Sneaker',
   
8 => 'Bag',
   
9 => 'Ankle boot'
];

for (
$i = 0; $i < count($predictions); $i++) {
   
// Prepare the label text
   
$labelText = $fashion_mnist_labels[$predictions[$i]] . " actual label " . $fashion_mnist_labels[$y_test[$i]];

   
// Pad the label text to a fixed length, e.g., 50 characters
   
$paddedLabelText = str_pad($labelText, 50);

   
// Echo the padded label text
   
echo $paddedLabelText . " ";

   
// Check condition and echo the symbol
   
if ($fashion_mnist_labels[$predictions[$i]] == $fashion_mnist_labels[$y_test[$i]]) {
        echo
"?"; // Green check mark for true
   
} else {
        echo
"?"; // Red cross for false
   
}

    echo
"\n\n";
}





?>