PHP Classes

File: TEST/TrainingTest/p562.php

Recommend this page to a friend!
  Classes of Cuthbert Martin Lwinga   PHP Neural Net Library   TEST/TrainingTest/p562.php   Download  
File: TEST/TrainingTest/p562.php
Role: Example script
Content type: text/plain
Description: Example script
Class: PHP Neural Net Library
Build, train, evaluate, and use neural networks
Author: By
Last change:
Date: 6 months ago
Size: 4,043 bytes
 

Contents

Class file image Download
<?PHP
ini_set
('memory_limit', '20480M'); // Increase the memory limit to 20480MB (20GB)
include_once("../../CLASSES/Headers.php");
use
NameSpaceNumpyLight\NumpyLight;
use
NameSpaceRandomGenerator\RandomGenerator;
use
NameSpaceActivationRelu\Activation_Relu;
use
NameSpaceOptimizerSGD\Optimizer_SGD;
use
NameSpaceOptimizerAdagrad\Optimizer_Adagrad;
use
NameSpaceOptimizerRMSprop\Optimizer_RMSprop;

function
load_mnist_dataset($dataset, $path) {
   
$labels = [];
   
$dir = $path . '/' . $dataset;
   
   
// Check if the main directory exists and is readable
   
if (is_readable($dir) && ($dir_content = scandir($dir))) {
        foreach (
$dir_content as $item) {
            if (
$item !== '.' && $item !== '..' && is_dir($dir . '/' . $item)) {
               
$labels[] = $item;
            }
        }
    }

   
$X = [];
   
$y = [];

    foreach (
$labels as $label) {
       
$label_path = $dir . '/' . $label;
        if (
is_readable($label_path) && ($files = scandir($label_path))) {
            foreach (
$files as $file) {
                if (
$file !== '.' && $file !== '..') {
                   
$filePath = $label_path . '/' . $file;
                    if (
is_readable($filePath) && !is_dir($filePath)) {
                       
$imageProcessor = new ImageProcessor($filePath);
                       
$imageData = $imageProcessor->getImageGrayscaleArray(["rows" => 28, "cols" => 28]);
                       
$X[] = $imageData;
                       
$y[] = $label;
                    }
                }
            }
        }
    }

    return [
"X" => $X, "y" => $y];
}

function
create_data_mnist($path) {
   
// Load both sets separately
   
$trainData = load_mnist_dataset('train', $path);
   
$X = $trainData['X'];
   
$y = $trainData['y'];

   
$testData = load_mnist_dataset('test', $path);
   
$X_test = $testData['X'];
   
$y_test = $testData['y'];

   
// And return all the data
   
return [$X,$y,$X_test,$y_test];
}


$mnist_data = create_data_mnist("fashion_mnist_images");

list(
$X, $y, $X_test, $y_test) = $mnist_data;


$keys = range(0, NumpyLight::shape($X)[0] - 1);

NumpyLight::random()->shuffle($keys);

$X = NumpyLight::rearrangeMatrix($X, $keys);
$y = NumpyLight::rearrangeMatrix($y, $keys);


# Scale and reshape samples
// X = (X.reshape(X.shape[ 0 ], - 1 ).astype(np.float32) - 127.5 ) / 127.5;
// $X = NumpyLight::reshape($X,[NumpyLight::shape($X)[0],-1]);
$X = NumpyLight::divide(
       
NumpyLight::subtract(
           
NumpyLight::reshape(
               
$X,
                [
NumpyLight::shape($X)[0],-1])
            ,
           
127.5)
        ,
127.5);

$X_test = NumpyLight::divide(
       
NumpyLight::subtract(
           
NumpyLight::reshape(
               
$X_test,
                [
NumpyLight::shape($X_test)[0],-1])
            ,
           
127.5)
        ,
127.5);

$validation = [$X_test, $y_test];

echo
"\n\nModel Init\n\n";

$Model = new Model();
$Model->add(new Layer_Dense(NumpyLight::shape($X)[1],64));
$Model->add(new Activation_Relu());
$Model->add(new Layer_Dense(64,64));
$Model->add(new Activation_Relu());
$Model->add(new Layer_Dense(64,64));
$Model->add(new Activation_Softmax());
$Model->set(
   
$loss_function = new Loss_CategoricalCrossentropy(),
   
$optimizer = new Optimizer_Adam($learning_rate = 0.001, $decay = 1e-3),
   
$accuracy = new Accuracy_Categorical()
);

$Model->finalize();

$Model->train($X, $y,$epoch = 200, $batch_size = 128,$print_every = 100,$validation_data = $validation);


$Model->save();
// $ModelParameters = $Model->get_parameters();
// echo "\n\nModel from Params\n\n";

// $Model = new Model();
// $Model->add(new Layer_Dense(NumpyLight::shape($X)[1],64));
// $Model->add(new Activation_Relu());
// $Model->add(new Layer_Dense(64,64));
// $Model->add(new Activation_Relu());
// $Model->add(new Layer_Dense(64,64));
// $Model->add(new Activation_Softmax());
// $Model->set(
// $loss_function = new Loss_CategoricalCrossentropy(),
// $optimizer = new Optimizer_Adam($learning_rate = 0.001, $decay = 1e-3),
// $accuracy = new Accuracy_Categorical()
// );

// $Model->finalize();

// $Model->set_parameters($ModelParameters);

// $Model->evaluate($X_test, $y_test);

?>