PHP Classes

File: jsfeat.js

Recommend this page to a friend!
  Classes of Dantigny francois   PHP Image Correllation   jsfeat.js   Download  
File: jsfeat.js
Role: Auxiliary data
Content type: text/plain
Description: Auxiliary data
Class: PHP Image Correllation
Get the similarity between images with correlation
Author: By
Last change:
Date: 10 months ago
Size: 229,358 bytes
 

Contents

Class file image Download
/** * @author Eugene Zatepyakin / http://inspirit.ru/ */ // namespace ? var jsfeat = jsfeat || { REVISION: 'ALPHA' }; /** * @author Eugene Zatepyakin / http://inspirit.ru/ */ (function(global) { "use strict"; // // CONSTANTS var EPSILON = 0.0000001192092896; var FLT_MIN = 1E-37; // implementation from CCV project // currently working only with u8,s32,f32 var U8_t = 0x0100, S32_t = 0x0200, F32_t = 0x0400, S64_t = 0x0800, F64_t = 0x1000; var C1_t = 0x01, C2_t = 0x02, C3_t = 0x03, C4_t = 0x04; var _data_type_size = new Int32Array([ -1, 1, 4, -1, 4, -1, -1, -1, 8, -1, -1, -1, -1, -1, -1, -1, 8 ]); var get_data_type = (function () { return function(type) { return (type & 0xFF00); } })(); var get_channel = (function () { return function(type) { return (type & 0xFF); } })(); var get_data_type_size = (function () { return function(type) { return _data_type_size[(type & 0xFF00) >> 8]; } })(); // color conversion var COLOR_RGBA2GRAY = 0; var COLOR_RGB2GRAY = 1; var COLOR_BGRA2GRAY = 2; var COLOR_BGR2GRAY = 3; // box blur option var BOX_BLUR_NOSCALE = 0x01; // svd options var SVD_U_T = 0x01; var SVD_V_T = 0x02; var data_t = (function () { function data_t(size_in_bytes, buffer) { // we need align size to multiple of 8 this.size = ((size_in_bytes + 7) | 0) & -8; if (typeof buffer === "undefined") { this.buffer = new ArrayBuffer(this.size); } else { this.buffer = buffer; this.size = buffer.length; } this.u8 = new Uint8Array(this.buffer); this.i32 = new Int32Array(this.buffer); this.f32 = new Float32Array(this.buffer); this.f64 = new Float64Array(this.buffer); } return data_t; })(); var matrix_t = (function () { // columns, rows, data_type function matrix_t(c, r, data_type, data_buffer) { this.type = get_data_type(data_type)|0; this.channel = get_channel(data_type)|0; this.cols = c|0; this.rows = r|0; if (typeof data_buffer === "undefined") { this.allocate(); } else { this.buffer = data_buffer; // data user asked for this.data = this.type&U8_t ? this.buffer.u8 : (this.type&S32_t ? this.buffer.i32 : (this.type&F32_t ? this.buffer.f32 : this.buffer.f64)); } } matrix_t.prototype.allocate = function() { // clear references delete this.data; delete this.buffer; // this.buffer = new data_t((this.cols * get_data_type_size(this.type) * this.channel) * this.rows); this.data = this.type&U8_t ? this.buffer.u8 : (this.type&S32_t ? this.buffer.i32 : (this.type&F32_t ? this.buffer.f32 : this.buffer.f64)); } matrix_t.prototype.copy_to = function(other) { var od = other.data, td = this.data; var i = 0, n = (this.cols*this.rows*this.channel)|0; for(; i < n-4; i+=4) { od[i] = td[i]; od[i+1] = td[i+1]; od[i+2] = td[i+2]; od[i+3] = td[i+3]; } for(; i < n; ++i) { od[i] = td[i]; } } matrix_t.prototype.resize = function(c, r, ch) { if (typeof ch === "undefined") { ch = this.channel; } // relocate buffer only if new size doesnt fit var new_size = (c * get_data_type_size(this.type) * ch) * r; if(new_size > this.buffer.size) { this.cols = c; this.rows = r; this.channel = ch; this.allocate(); } else { this.cols = c; this.rows = r; this.channel = ch; } } return matrix_t; })(); var pyramid_t = (function () { function pyramid_t(levels) { this.levels = levels|0; this.data = new Array(levels); this.pyrdown = jsfeat.imgproc.pyrdown; } pyramid_t.prototype.allocate = function(start_w, start_h, data_type) { var i = this.levels; while(--i >= 0) { this.data[i] = new matrix_t(start_w >> i, start_h >> i, data_type); } } pyramid_t.prototype.build = function(input, skip_first_level) { if (typeof skip_first_level === "undefined") { skip_first_level = true; } // just copy data to first level var i = 2, a = input, b = this.data[0]; if(!skip_first_level) { var j=input.cols*input.rows; while(--j >= 0) { b.data[j] = input.data[j]; } } b = this.data[1]; this.pyrdown(a, b); for(; i < this.levels; ++i) { a = b; b = this.data[i]; this.pyrdown(a, b); } } return pyramid_t; })(); var keypoint_t = (function () { function keypoint_t(x,y,score,level,angle) { if (typeof x === "undefined") { x=0; } if (typeof y === "undefined") { y=0; } if (typeof score === "undefined") { score=0; } if (typeof level === "undefined") { level=0; } if (typeof angle === "undefined") { angle=-1.0; } this.x = x; this.y = y; this.score = score; this.level = level; this.angle = angle; } return keypoint_t; })(); // data types global.U8_t = U8_t; global.S32_t = S32_t; global.F32_t = F32_t; global.S64_t = S64_t; global.F64_t = F64_t; // data channels global.C1_t = C1_t; global.C2_t = C2_t; global.C3_t = C3_t; global.C4_t = C4_t; // popular formats global.U8C1_t = U8_t | C1_t; global.U8C3_t = U8_t | C3_t; global.U8C4_t = U8_t | C4_t; global.F32C1_t = F32_t | C1_t; global.F32C2_t = F32_t | C2_t; global.S32C1_t = S32_t | C1_t; global.S32C2_t = S32_t | C2_t; // constants global.EPSILON = EPSILON; global.FLT_MIN = FLT_MIN; // color convert global.COLOR_RGBA2GRAY = COLOR_RGBA2GRAY; global.COLOR_RGB2GRAY = COLOR_RGB2GRAY; global.COLOR_BGRA2GRAY = COLOR_BGRA2GRAY; global.COLOR_BGR2GRAY = COLOR_BGR2GRAY; // options global.BOX_BLUR_NOSCALE = BOX_BLUR_NOSCALE; global.SVD_U_T = SVD_U_T; global.SVD_V_T = SVD_V_T; global.get_data_type = get_data_type; global.get_channel = get_channel; global.get_data_type_size = get_data_type_size; global.data_t = data_t; global.matrix_t = matrix_t; global.pyramid_t = pyramid_t; global.keypoint_t = keypoint_t; })(jsfeat); /** * @author Eugene Zatepyakin / http://inspirit.ru/ */ (function(global) { "use strict"; // var cache = (function() { // very primitive array cache, still need testing if it helps // of course V8 has its own powerful cache sys but i'm not sure // it caches several multichannel 640x480 buffer creations each frame var _pool_node_t = (function () { function _pool_node_t(size_in_bytes) { this.next = null; this.data = new jsfeat.data_t(size_in_bytes); this.size = this.data.size; this.buffer = this.data.buffer; this.u8 = this.data.u8; this.i32 = this.data.i32; this.f32 = this.data.f32; this.f64 = this.data.f64; } _pool_node_t.prototype.resize = function(size_in_bytes) { delete this.data; this.data = new jsfeat.data_t(size_in_bytes); this.size = this.data.size; this.buffer = this.data.buffer; this.u8 = this.data.u8; this.i32 = this.data.i32; this.f32 = this.data.f32; this.f64 = this.data.f64; } return _pool_node_t; })(); var _pool_head, _pool_tail; var _pool_size = 0; return { allocate: function(capacity, data_size) { _pool_head = _pool_tail = new _pool_node_t(data_size); for (var i = 0; i < capacity; ++i) { var node = new _pool_node_t(data_size); _pool_tail = _pool_tail.next = node; _pool_size++; } }, get_buffer: function(size_in_bytes) { // assume we have enough free nodes var node = _pool_head; _pool_head = _pool_head.next; _pool_size--; if(size_in_bytes > node.size) { node.resize(size_in_bytes); } return node; }, put_buffer: function(node) { _pool_tail = _pool_tail.next = node; _pool_size++; } }; })(); global.cache = cache; // for now we dont need more than 30 buffers // if having cache sys really helps we can add auto extending sys cache.allocate(30, 640*4); })(jsfeat); /** * @author Eugene Zatepyakin / http://inspirit.ru/ */ (function(global) { "use strict"; // var math = (function() { var qsort_stack = new Int32Array(48*2); return { get_gaussian_kernel: function(size, sigma, kernel, data_type) { var i=0,x=0.0,t=0.0,sigma_x=0.0,scale_2x=0.0; var sum = 0.0; var kern_node = jsfeat.cache.get_buffer(size<<2); var _kernel = kern_node.f32;//new Float32Array(size); if((size&1) == 1 && size <= 7 && sigma <= 0) { switch(size>>1) { case 0: _kernel[0] = 1.0; sum = 1.0; break; case 1: _kernel[0] = 0.25, _kernel[1] = 0.5, _kernel[2] = 0.25; sum = 0.25+0.5+0.25; break; case 2: _kernel[0] = 0.0625, _kernel[1] = 0.25, _kernel[2] = 0.375, _kernel[3] = 0.25, _kernel[4] = 0.0625; sum = 0.0625+0.25+0.375+0.25+0.0625; break; case 3: _kernel[0] = 0.03125, _kernel[1] = 0.109375, _kernel[2] = 0.21875, _kernel[3] = 0.28125, _kernel[4] = 0.21875, _kernel[5] = 0.109375, _kernel[6] = 0.03125; sum = 0.03125+0.109375+0.21875+0.28125+0.21875+0.109375+0.03125; break; } } else { sigma_x = sigma > 0 ? sigma : ((size-1)*0.5 - 1.0)*0.3 + 0.8; scale_2x = -0.5/(sigma_x*sigma_x); for( ; i < size; ++i ) { x = i - (size-1)*0.5; t = Math.exp(scale_2x*x*x); _kernel[i] = t; sum += t; } } if(data_type & jsfeat.U8_t) { // int based kernel sum = 256.0/sum; for (i = 0; i < size; ++i) { kernel[i] = (_kernel[i] * sum + 0.5)|0; } } else { // classic kernel sum = 1.0/sum; for (i = 0; i < size; ++i) { kernel[i] = _kernel[i] * sum; } } jsfeat.cache.put_buffer(kern_node); }, // model is 3x3 matrix_t perspective_4point_transform: function(model, src_x0, src_y0, dst_x0, dst_y0, src_x1, src_y1, dst_x1, dst_y1, src_x2, src_y2, dst_x2, dst_y2, src_x3, src_y3, dst_x3, dst_y3) { var t1 = src_x0; var t2 = src_x2; var t4 = src_y1; var t5 = t1 * t2 * t4; var t6 = src_y3; var t7 = t1 * t6; var t8 = t2 * t7; var t9 = src_y2; var t10 = t1 * t9; var t11 = src_x1; var t14 = src_y0; var t15 = src_x3; var t16 = t14 * t15; var t18 = t16 * t11; var t20 = t15 * t11 * t9; var t21 = t15 * t4; var t24 = t15 * t9; var t25 = t2 * t4; var t26 = t6 * t2; var t27 = t6 * t11; var t28 = t9 * t11; var t30 = 1.0 / (t21-t24 - t25 + t26 - t27 + t28); var t32 = t1 * t15; var t35 = t14 * t11; var t41 = t4 * t1; var t42 = t6 * t41; var t43 = t14 * t2; var t46 = t16 * t9; var t48 = t14 * t9 * t11; var t51 = t4 * t6 * t2; var t55 = t6 * t14; var Hr0 = -(t8-t5 + t10 * t11 - t11 * t7 - t16 * t2 + t18 - t20 + t21 * t2) * t30; var Hr1 = (t5 - t8 - t32 * t4 + t32 * t9 + t18 - t2 * t35 + t27 * t2 - t20) * t30; var Hr2 = t1; var Hr3 = (-t9 * t7 + t42 + t43 * t4 - t16 * t4 + t46 - t48 + t27 * t9 - t51) * t30; var Hr4 = (-t42 + t41 * t9 - t55 * t2 + t46 - t48 + t55 * t11 + t51 - t21 * t9) * t30; var Hr5 = t14; var Hr6 = (-t10 + t41 + t43 - t35 + t24 - t21 - t26 + t27) * t30; var Hr7 = (-t7 + t10 + t16 - t43 + t27 - t28 - t21 + t25) * t30; t1 = dst_x0; t2 = dst_x2; t4 = dst_y1; t5 = t1 * t2 * t4; t6 = dst_y3; t7 = t1 * t6; t8 = t2 * t7; t9 = dst_y2; t10 = t1 * t9; t11 = dst_x1; t14 = dst_y0; t15 = dst_x3; t16 = t14 * t15; t18 = t16 * t11; t20 = t15 * t11 * t9; t21 = t15 * t4; t24 = t15 * t9; t25 = t2 * t4; t26 = t6 * t2; t27 = t6 * t11; t28 = t9 * t11; t30 = 1.0 / (t21-t24 - t25 + t26 - t27 + t28); t32 = t1 * t15; t35 = t14 * t11; t41 = t4 * t1; t42 = t6 * t41; t43 = t14 * t2; t46 = t16 * t9; t48 = t14 * t9 * t11; t51 = t4 * t6 * t2; t55 = t6 * t14; var Hl0 = -(t8-t5 + t10 * t11 - t11 * t7 - t16 * t2 + t18 - t20 + t21 * t2) * t30; var Hl1 = (t5 - t8 - t32 * t4 + t32 * t9 + t18 - t2 * t35 + t27 * t2 - t20) * t30; var Hl2 = t1; var Hl3 = (-t9 * t7 + t42 + t43 * t4 - t16 * t4 + t46 - t48 + t27 * t9 - t51) * t30; var Hl4 = (-t42 + t41 * t9 - t55 * t2 + t46 - t48 + t55 * t11 + t51 - t21 * t9) * t30; var Hl5 = t14; var Hl6 = (-t10 + t41 + t43 - t35 + t24 - t21 - t26 + t27) * t30; var Hl7 = (-t7 + t10 + t16 - t43 + t27 - t28 - t21 + t25) * t30; // the following code computes R = Hl * inverse Hr t2 = Hr4-Hr7*Hr5; t4 = Hr0*Hr4; t5 = Hr0*Hr5; t7 = Hr3*Hr1; t8 = Hr2*Hr3; t10 = Hr1*Hr6; var t12 = Hr2*Hr6; t15 = 1.0 / (t4-t5*Hr7-t7+t8*Hr7+t10*Hr5-t12*Hr4); t18 = -Hr3+Hr5*Hr6; var t23 = -Hr3*Hr7+Hr4*Hr6; t28 = -Hr1+Hr2*Hr7; var t31 = Hr0-t12; t35 = Hr0*Hr7-t10; t41 = -Hr1*Hr5+Hr2*Hr4; var t44 = t5-t8; var t47 = t4-t7; t48 = t2*t15; var t49 = t28*t15; var t50 = t41*t15; var mat = model.data; mat[0] = Hl0*t48+Hl1*(t18*t15)-Hl2*(t23*t15); mat[1] = Hl0*t49+Hl1*(t31*t15)-Hl2*(t35*t15); mat[2] = -Hl0*t50-Hl1*(t44*t15)+Hl2*(t47*t15); mat[3] = Hl3*t48+Hl4*(t18*t15)-Hl5*(t23*t15); mat[4] = Hl3*t49+Hl4*(t31*t15)-Hl5*(t35*t15); mat[5] = -Hl3*t50-Hl4*(t44*t15)+Hl5*(t47*t15); mat[6] = Hl6*t48+Hl7*(t18*t15)-t23*t15; mat[7] = Hl6*t49+Hl7*(t31*t15)-t35*t15; mat[8] = -Hl6*t50-Hl7*(t44*t15)+t47*t15; }, // The current implementation was derived from *BSD system qsort(): // Copyright (c) 1992, 1993 // The Regents of the University of California. All rights reserved. qsort: function(array, low, high, cmp) { var isort_thresh = 7; var t,ta,tb,tc; var sp = 0,left=0,right=0,i=0,n=0,m=0,ptr=0,ptr2=0,d=0; var left0=0,left1=0,right0=0,right1=0,pivot=0,a=0,b=0,c=0,swap_cnt=0; var stack = qsort_stack; if( (high-low+1) <= 1 ) return; stack[0] = low; stack[1] = high; while( sp >= 0 ) { left = stack[sp<<1]; right = stack[(sp<<1)+1]; sp--; for(;;) { n = (right - left) + 1; if( n <= isort_thresh ) { //insert_sort: for( ptr = left + 1; ptr <= right; ptr++ ) { for( ptr2 = ptr; ptr2 > left && cmp(array[ptr2],array[ptr2-1]); ptr2--) { t = array[ptr2]; array[ptr2] = array[ptr2-1]; array[ptr2-1] = t; } } break; } else { swap_cnt = 0; left0 = left; right0 = right; pivot = left + (n>>1); if( n > 40 ) { d = n >> 3; a = left, b = left + d, c = left + (d<<1); ta = array[a],tb = array[b],tc = array[c]; left = cmp(ta, tb) ? (cmp(tb, tc) ? b : (cmp(ta, tc) ? c : a)) : (cmp(tc, tb) ? b : (cmp(ta, tc) ? a : c)); a = pivot - d, b = pivot, c = pivot + d; ta = array[a],tb = array[b],tc = array[c]; pivot = cmp(ta, tb) ? (cmp(tb, tc) ? b : (cmp(ta, tc) ? c : a)) : (cmp(tc, tb) ? b : (cmp(ta, tc) ? a : c)); a = right - (d<<1), b = right - d, c = right; ta = array[a],tb = array[b],tc = array[c]; right = cmp(ta, tb) ? (cmp(tb, tc) ? b : (cmp(ta, tc) ? c : a)) : (cmp(tc, tb) ? b : (cmp(ta, tc) ? a : c)); } a = left, b = pivot, c = right; ta = array[a],tb = array[b],tc = array[c]; pivot = cmp(ta, tb) ? (cmp(tb, tc) ? b : (cmp(ta, tc) ? c : a)) : (cmp(tc, tb) ? b : (cmp(ta, tc) ? a : c)); if( pivot != left0 ) { t = array[pivot]; array[pivot] = array[left0]; array[left0] = t; pivot = left0; } left = left1 = left0 + 1; right = right1 = right0; ta = array[pivot]; for(;;) { while( left <= right && !cmp(ta, array[left]) ) { if( !cmp(array[left], ta) ) { if( left > left1 ) { t = array[left1]; array[left1] = array[left]; array[left] = t; } swap_cnt = 1; left1++; } left++; } while( left <= right && !cmp(array[right], ta) ) { if( !cmp(ta, array[right]) ) { if( right < right1 ) { t = array[right1]; array[right1] = array[right]; array[right] = t; } swap_cnt = 1; right1--; } right--; } if( left > right ) break; t = array[left]; array[left] = array[right]; array[right] = t; swap_cnt = 1; left++; right--; } if( swap_cnt == 0 ) { left = left0, right = right0; //goto insert_sort; for( ptr = left + 1; ptr <= right; ptr++ ) { for( ptr2 = ptr; ptr2 > left && cmp(array[ptr2],array[ptr2-1]); ptr2--) { t = array[ptr2]; array[ptr2] = array[ptr2-1]; array[ptr2-1] = t; } } break; } n = Math.min( (left1 - left0), (left - left1) ); m = (left-n)|0; for( i = 0; i < n; ++i,++m ) { t = array[left0+i]; array[left0+i] = array[m]; array[m] = t; } n = Math.min( (right0 - right1), (right1 - right) ); m = (right0-n+1)|0; for( i = 0; i < n; ++i,++m ) { t = array[left+i]; array[left+i] = array[m]; array[m] = t; } n = (left - left1); m = (right1 - right); if( n > 1 ) { if( m > 1 ) { if( n > m ) { ++sp; stack[sp<<1] = left0; stack[(sp<<1)+1] = left0 + n - 1; left = right0 - m + 1, right = right0; } else { ++sp; stack[sp<<1] = right0 - m + 1; stack[(sp<<1)+1] = right0; left = left0, right = left0 + n - 1; } } else { left = left0, right = left0 + n - 1; } } else if( m > 1 ) left = right0 - m + 1, right = right0; else break; } } } }, median: function(array, low, high) { var w; var middle=0,ll=0,hh=0,median=(low+high)>>1; for (;;) { if (high <= low) return array[median]; if (high == (low + 1)) { if (array[low] > array[high]) { w = array[low]; array[low] = array[high]; array[high] = w; } return array[median]; } middle = ((low + high) >> 1); if (array[middle] > array[high]) { w = array[middle]; array[middle] = array[high]; array[high] = w; } if (array[low] > array[high]) { w = array[low]; array[low] = array[high]; array[high] = w; } if (array[middle] > array[low]) { w = array[middle]; array[middle] = array[low]; array[low] = w; } ll = (low + 1); w = array[middle]; array[middle] = array[ll]; array[ll] = w; hh = high; for (;;) { do ++ll; while (array[low] > array[ll]); do --hh; while (array[hh] > array[low]); if (hh < ll) break; w = array[ll]; array[ll] = array[hh]; array[hh] = w; } w = array[low]; array[low] = array[hh]; array[hh] = w; if (hh <= median) low = ll; else if (hh >= median) high = (hh - 1); } return 0; } }; })(); global.math = math; })(jsfeat); /** * @author Eugene Zatepyakin / http://inspirit.ru/ * */ (function(global) { "use strict"; // var matmath = (function() { return { identity: function(M, value) { if (typeof value === "undefined") { value=1; } var src=M.data; var rows=M.rows, cols=M.cols, cols_1=(cols+1)|0; var len = rows * cols; var k = len; while(--len >= 0) src[len] = 0.0; len = k; k = 0; while(k < len) { src[k] = value; k = k + cols_1; } }, transpose: function(At, A) { var i=0,j=0,nrows=A.rows,ncols=A.cols; var Ai=0,Ati=0,pAt=0; var ad=A.data,atd=At.data; for (; i < nrows; Ati += 1, Ai += ncols, i++) { pAt = Ati; for (j = 0; j < ncols; pAt += nrows, j++) atd[pAt] = ad[Ai+j]; } }, // C = A * B multiply: function(C, A, B) { var i=0,j=0,k=0; var Ap=0,pA=0,pB=0,p_B=0,Cp=0; var ncols=A.cols,nrows=A.rows,mcols=B.cols; var ad=A.data,bd=B.data,cd=C.data; var sum=0.0; for (; i < nrows; Ap += ncols, i++) { for (p_B = 0, j = 0; j < mcols; Cp++, p_B++, j++) { pB = p_B; pA = Ap; sum = 0.0; for (k = 0; k < ncols; pA++, pB += mcols, k++) { sum += ad[pA] * bd[pB]; } cd[Cp] = sum; } } }, // C = A * B' multiply_ABt: function(C, A, B) { var i=0,j=0,k=0; var Ap=0,pA=0,pB=0,Cp=0; var ncols=A.cols,nrows=A.rows,mrows=B.rows; var ad=A.data,bd=B.data,cd=C.data; var sum=0.0; for (; i < nrows; Ap += ncols, i++) { for (pB = 0, j = 0; j < mrows; Cp++, j++) { pA = Ap; sum = 0.0; for (k = 0; k < ncols; pA++, pB++, k++) { sum += ad[pA] * bd[pB]; } cd[Cp] = sum; } } }, // C = A' * B multiply_AtB: function(C, A, B) { var i=0,j=0,k=0; var Ap=0,pA=0,pB=0,p_B=0,Cp=0; var ncols=A.cols,nrows=A.rows,mcols=B.cols; var ad=A.data,bd=B.data,cd=C.data; var sum=0.0; for (; i < ncols; Ap++, i++) { for (p_B = 0, j = 0; j < mcols; Cp++, p_B++, j++) { pB = p_B; pA = Ap; sum = 0.0; for (k = 0; k < nrows; pA += ncols, pB += mcols, k++) { sum += ad[pA] * bd[pB]; } cd[Cp] = sum; } } }, // C = A * A' multiply_AAt: function(C, A) { var i=0,j=0,k=0; var pCdiag=0,p_A=0,pA=0,pB=0,pC=0,pCt=0; var ncols=A.cols,nrows=A.rows; var ad=A.data,cd=C.data; var sum=0.0; for (; i < nrows; pCdiag += nrows + 1, p_A = pA, i++) { pC = pCdiag; pCt = pCdiag; pB = p_A; for (j = i; j < nrows; pC++, pCt += nrows, j++) { pA = p_A; sum = 0.0; for (k = 0; k < ncols; k++) { sum += ad[pA++] * ad[pB++]; } cd[pC] = sum cd[pCt] = sum; } } }, // C = A' * A multiply_AtA: function(C, A) { var i=0,j=0,k=0; var p_A=0,pA=0,pB=0,p_C=0,pC=0,p_CC=0; var ncols=A.cols,nrows=A.rows; var ad=A.data,cd=C.data; var sum=0.0; for (; i < ncols; p_C += ncols, i++) { p_A = i; p_CC = p_C + i; pC = p_CC; for (j = i; j < ncols; pC++, p_CC += ncols, j++) { pA = p_A; pB = j; sum = 0.0; for (k = 0; k < nrows; pA += ncols, pB += ncols, k++) { sum += ad[pA] * ad[pB]; } cd[pC] = sum cd[p_CC] = sum; } } }, // various small matrix operations identity_3x3: function(M, value) { if (typeof value === "undefined") { value=1; } var dt=M.data; dt[0] = dt[4] = dt[8] = value; dt[1] = dt[2] = dt[3] = 0; dt[5] = dt[6] = dt[7] = 0; }, invert_3x3: function(from, to) { var A = from.data, invA = to.data; var t1 = A[4]; var t2 = A[8]; var t4 = A[5]; var t5 = A[7]; var t8 = A[0]; var t9 = t8*t1; var t11 = t8*t4; var t13 = A[3]; var t14 = A[1]; var t15 = t13*t14; var t17 = A[2]; var t18 = t13*t17; var t20 = A[6]; var t21 = t20*t14; var t23 = t20*t17; var t26 = 1.0/(t9*t2-t11*t5-t15*t2+t18*t5+t21*t4-t23*t1); invA[0] = (t1*t2-t4*t5)*t26; invA[1] = -(t14*t2-t17*t5)*t26; invA[2] = -(-t14*t4+t17*t1)*t26; invA[3] = -(t13*t2-t4*t20)*t26; invA[4] = (t8*t2-t23)*t26; invA[5] = -(t11-t18)*t26; invA[6] = -(-t13*t5+t1*t20)*t26; invA[7] = -(t8*t5-t21)*t26; invA[8] = (t9-t15)*t26; }, // C = A * B multiply_3x3: function(C, A, B) { var Cd=C.data, Ad=A.data, Bd=B.data; var m1_0 = Ad[0], m1_1 = Ad[1], m1_2 = Ad[2]; var m1_3 = Ad[3], m1_4 = Ad[4], m1_5 = Ad[5]; var m1_6 = Ad[6], m1_7 = Ad[7], m1_8 = Ad[8]; var m2_0 = Bd[0], m2_1 = Bd[1], m2_2 = Bd[2]; var m2_3 = Bd[3], m2_4 = Bd[4], m2_5 = Bd[5]; var m2_6 = Bd[6], m2_7 = Bd[7], m2_8 = Bd[8]; Cd[0] = m1_0 * m2_0 + m1_1 * m2_3 + m1_2 * m2_6; Cd[1] = m1_0 * m2_1 + m1_1 * m2_4 + m1_2 * m2_7; Cd[2] = m1_0 * m2_2 + m1_1 * m2_5 + m1_2 * m2_8; Cd[3] = m1_3 * m2_0 + m1_4 * m2_3 + m1_5 * m2_6; Cd[4] = m1_3 * m2_1 + m1_4 * m2_4 + m1_5 * m2_7; Cd[5] = m1_3 * m2_2 + m1_4 * m2_5 + m1_5 * m2_8; Cd[6] = m1_6 * m2_0 + m1_7 * m2_3 + m1_8 * m2_6; Cd[7] = m1_6 * m2_1 + m1_7 * m2_4 + m1_8 * m2_7; Cd[8] = m1_6 * m2_2 + m1_7 * m2_5 + m1_8 * m2_8; }, mat3x3_determinant: function(M) { var md=M.data; return md[0] * md[4] * md[8] - md[0] * md[5] * md[7] - md[3] * md[1] * md[8] + md[3] * md[2] * md[7] + md[6] * md[1] * md[5] - md[6] * md[2] * md[4]; }, determinant_3x3: function(M11, M12, M13, M21, M22, M23, M31, M32, M33) { return M11 * M22 * M33 - M11 * M23 * M32 - M21 * M12 * M33 + M21 * M13 * M32 + M31 * M12 * M23 - M31 * M13 * M22; } }; })(); global.matmath = matmath; })(jsfeat); /** * @author Eugene Zatepyakin / http://inspirit.ru/ * */ (function(global) { "use strict"; // var linalg = (function() { var swap = function(A, i0, i1, t) { t = A[i0]; A[i0] = A[i1]; A[i1] = t; } var hypot = function(a, b) { a = Math.abs(a); b = Math.abs(b); if( a > b ) { b /= a; return a*Math.sqrt(1.0 + b*b); } if( b > 0 ) { a /= b; return b*Math.sqrt(1.0 + a*a); } return 0.0; } var JacobiImpl = function(A, astep, W, V, vstep, n) { var eps = jsfeat.EPSILON; var i=0,j=0,k=0,m=0,l=0,idx=0,_in=0,_in2=0; var iters=0,max_iter=n*n*30; var mv=0.0,val=0.0,p=0.0,y=0.0,t=0.0,s=0.0,c=0.0,a0=0.0,b0=0.0; var indR_buff = jsfeat.cache.get_buffer(n<<2); var indC_buff = jsfeat.cache.get_buffer(n<<2); var indR = indR_buff.i32; var indC = indC_buff.i32; if(V) { for(; i < n; i++) { k = i*vstep; for(j = 0; j < n; j++) { V[k + j] = 0.0; } V[k + i] = 1.0; } } for(k = 0; k < n; k++) { W[k] = A[(astep + 1)*k]; if(k < n - 1) { for(m = k+1, mv = Math.abs(A[astep*k + m]), i = k+2; i < n; i++) { val = Math.abs(A[astep*k+i]); if(mv < val) mv = val, m = i; } indR[k] = m; } if(k > 0) { for(m = 0, mv = Math.abs(A[k]), i = 1; i < k; i++) { val = Math.abs(A[astep*i+k]); if(mv < val) mv = val, m = i; } indC[k] = m; } } if(n > 1) for( ; iters < max_iter; iters++) { // find index (k,l) of pivot p for(k = 0, mv = Math.abs(A[indR[0]]), i = 1; i < n-1; i++) { val = Math.abs(A[astep*i + indR[i]]); if( mv < val ) mv = val, k = i; } l = indR[k]; for(i = 1; i < n; i++) { val = Math.abs(A[astep*indC[i] + i]); if( mv < val ) mv = val, k = indC[i], l = i; } p = A[astep*k + l]; if(Math.abs(p) <= eps) break; y = (W[l] - W[k])*0.5; t = Math.abs(y) + hypot(p, y); s = hypot(p, t); c = t/s; s = p/s; t = (p/t)*p; if(y < 0) s = -s, t = -t; A[astep*k + l] = 0; W[k] -= t; W[l] += t; // rotate rows and columns k and l for (i = 0; i < k; i++) { _in = (astep * i + k); _in2 = (astep * i + l); a0 = A[_in]; b0 = A[_in2]; A[_in] = a0 * c - b0 * s; A[_in2] = a0 * s + b0 * c; } for (i = (k + 1); i < l; i++) { _in = (astep * k + i); _in2 = (astep * i + l); a0 = A[_in]; b0 = A[_in2]; A[_in] = a0 * c - b0 * s; A[_in2] = a0 * s + b0 * c; } i = l + 1; _in = (astep * k + i); _in2 = (astep * l + i); for (; i < n; i++, _in++, _in2++) { a0 = A[_in]; b0 = A[_in2]; A[_in] = a0 * c - b0 * s; A[_in2] = a0 * s + b0 * c; } // rotate eigenvectors if (V) { _in = vstep * k; _in2 = vstep * l; for (i = 0; i < n; i++, _in++, _in2++) { a0 = V[_in]; b0 = V[_in2]; V[_in] = a0 * c - b0 * s; V[_in2] = a0 * s + b0 * c; } } for(j = 0; j < 2; j++) { idx = j == 0 ? k : l; if(idx < n - 1) { for(m = idx+1, mv = Math.abs(A[astep*idx + m]), i = idx+2; i < n; i++) { val = Math.abs(A[astep*idx+i]); if( mv < val ) mv = val, m = i; } indR[idx] = m; } if(idx > 0) { for(m = 0, mv = Math.abs(A[idx]), i = 1; i < idx; i++) { val = Math.abs(A[astep*i+idx]); if( mv < val ) mv = val, m = i; } indC[idx] = m; } } } // sort eigenvalues & eigenvectors for(k = 0; k < n-1; k++) { m = k; for(i = k+1; i < n; i++) { if(W[m] < W[i]) m = i; } if(k != m) { swap(W, m, k, mv); if(V) { for(i = 0; i < n; i++) { swap(V, vstep*m + i, vstep*k + i, mv); } } } } jsfeat.cache.put_buffer(indR_buff); jsfeat.cache.put_buffer(indC_buff); } var JacobiSVDImpl = function(At, astep, _W, Vt, vstep, m, n, n1) { var eps = jsfeat.EPSILON * 2.0; var minval = jsfeat.FLT_MIN; var i=0,j=0,k=0,iter=0,max_iter=Math.max(m, 30); var Ai=0,Aj=0,Vi=0,Vj=0,changed=0; var c=0.0, s=0.0, t=0.0; var t0=0.0,t1=0.0,sd=0.0,beta=0.0,gamma=0.0,delta=0.0,a=0.0,p=0.0,b=0.0; var seed = 0x1234; var val=0.0,val0=0.0,asum=0.0; var W_buff = jsfeat.cache.get_buffer(n<<3); var W = W_buff.f64; for(; i < n; i++) { for(k = 0, sd = 0; k < m; k++) { t = At[i*astep + k]; sd += t*t; } W[i] = sd; if(Vt) { for(k = 0; k < n; k++) { Vt[i*vstep + k] = 0; } Vt[i*vstep + i] = 1; } } for(; iter < max_iter; iter++) { changed = 0; for(i = 0; i < n-1; i++) { for(j = i+1; j < n; j++) { Ai = (i*astep)|0, Aj = (j*astep)|0; a = W[i], p = 0, b = W[j]; k = 2; p += At[Ai]*At[Aj]; p += At[Ai+1]*At[Aj+1]; for(; k < m; k++) p += At[Ai+k]*At[Aj+k]; if(Math.abs(p) <= eps*Math.sqrt(a*b)) continue; p *= 2.0; beta = a - b, gamma = hypot(p, beta); if( beta < 0 ) { delta = (gamma - beta)*0.5; s = Math.sqrt(delta/gamma); c = (p/(gamma*s*2.0)); } else { c = Math.sqrt((gamma + beta)/(gamma*2.0)); s = (p/(gamma*c*2.0)); } a=0.0, b=0.0; k = 2; // unroll t0 = c*At[Ai] + s*At[Aj]; t1 = -s*At[Ai] + c*At[Aj]; At[Ai] = t0; At[Aj] = t1; a += t0*t0; b += t1*t1; t0 = c*At[Ai+1] + s*At[Aj+1]; t1 = -s*At[Ai+1] + c*At[Aj+1]; At[Ai+1] = t0; At[Aj+1] = t1; a += t0*t0; b += t1*t1; for( ; k < m; k++ ) { t0 = c*At[Ai+k] + s*At[Aj+k]; t1 = -s*At[Ai+k] + c*At[Aj+k]; At[Ai+k] = t0; At[Aj+k] = t1; a += t0*t0; b += t1*t1; } W[i] = a; W[j] = b; changed = 1; if(Vt) { Vi = (i*vstep)|0, Vj = (j*vstep)|0; k = 2; t0 = c*Vt[Vi] + s*Vt[Vj]; t1 = -s*Vt[Vi] + c*Vt[Vj]; Vt[Vi] = t0; Vt[Vj] = t1; t0 = c*Vt[Vi+1] + s*Vt[Vj+1]; t1 = -s*Vt[Vi+1] + c*Vt[Vj+1]; Vt[Vi+1] = t0; Vt[Vj+1] = t1; for(; k < n; k++) { t0 = c*Vt[Vi+k] + s*Vt[Vj+k]; t1 = -s*Vt[Vi+k] + c*Vt[Vj+k]; Vt[Vi+k] = t0; Vt[Vj+k] = t1; } } } } if(changed == 0) break; } for(i = 0; i < n; i++) { for(k = 0, sd = 0; k < m; k++) { t = At[i*astep + k]; sd += t*t; } W[i] = Math.sqrt(sd); } for(i = 0; i < n-1; i++) { j = i; for(k = i+1; k < n; k++) { if(W[j] < W[k]) j = k; } if(i != j) { swap(W, i, j, sd); if(Vt) { for(k = 0; k < m; k++) { swap(At, i*astep + k, j*astep + k, t); } for(k = 0; k < n; k++) { swap(Vt, i*vstep + k, j*vstep + k, t); } } } } for(i = 0; i < n; i++) { _W[i] = W[i]; } if(!Vt) { jsfeat.cache.put_buffer(W_buff); return; } for(i = 0; i < n1; i++) { sd = i < n ? W[i] : 0; while(sd <= minval) { // if we got a zero singular value, then in order to get the corresponding left singular vector // we generate a random vector, project it to the previously computed left singular vectors, // subtract the projection and normalize the difference. val0 = (1.0/m); for(k = 0; k < m; k++) { seed = (seed * 214013 + 2531011); val = (((seed >> 16) & 0x7fff) & 256) != 0 ? val0 : -val0; At[i*astep + k] = val; } for(iter = 0; iter < 2; iter++) { for(j = 0; j < i; j++) { sd = 0; for(k = 0; k < m; k++) { sd += At[i*astep + k]*At[j*astep + k]; } asum = 0.0; for(k = 0; k < m; k++) { t = (At[i*astep + k] - sd*At[j*astep + k]); At[i*astep + k] = t; asum += Math.abs(t); } asum = asum ? 1.0/asum : 0; for(k = 0; k < m; k++) { At[i*astep + k] *= asum; } } } sd = 0; for(k = 0; k < m; k++) { t = At[i*astep + k]; sd += t*t; } sd = Math.sqrt(sd); } s = (1.0/sd); for(k = 0; k < m; k++) { At[i*astep + k] *= s; } } jsfeat.cache.put_buffer(W_buff); } return { lu_solve: function(A, B) { var i=0,j=0,k=0,p=1,astep=A.cols; var ad=A.data, bd=B.data; var t,alpha,d,s; for(i = 0; i < astep; i++) { k = i; for(j = i+1; j < astep; j++) { if(Math.abs(ad[j*astep + i]) > Math.abs(ad[k*astep+i])) { k = j; } } if(Math.abs(ad[k*astep+i]) < jsfeat.EPSILON) { return 0; // FAILED } if(k != i) { for(j = i; j < astep; j++ ) { swap(ad, i*astep+j, k*astep+j, t); } swap(bd, i, k, t); p = -p; } d = -1.0/ad[i*astep+i]; for(j = i+1; j < astep; j++) { alpha = ad[j*astep+i]*d; for(k = i+1; k < astep; k++) { ad[j*astep+k] += alpha*ad[i*astep+k]; } bd[j] += alpha*bd[i]; } ad[i*astep+i] = -d; } for(i = astep-1; i >= 0; i--) { s = bd[i]; for(k = i+1; k < astep; k++) { s -= ad[i*astep+k]*bd[k]; } bd[i] = s*ad[i*astep+i]; } return 1; // OK }, cholesky_solve: function(A, B) { var col=0,row=0,col2=0,cs=0,rs=0,i=0,j=0; var size = A.cols; var ad=A.data, bd=B.data; var val,inv_diag; for (col = 0; col < size; col++) { inv_diag = 1.0; cs = (col * size); rs = cs; for (row = col; row < size; row++) { // correct for the parts of cholesky already computed val = ad[(rs+col)]; for (col2 = 0; col2 < col; col2++) { val -= ad[(col2*size+col)] * ad[(rs+col2)]; } if (row == col) { // this is the diagonal element so don't divide ad[(rs+col)] = val; if(val == 0) { return 0; } inv_diag = 1.0 / val; } else { // cache the value without division in the upper half ad[(cs+row)] = val; // divide my the diagonal element for all others ad[(rs+col)] = val * inv_diag; } rs = (rs + size); } } // first backsub through L cs = 0; for (i = 0; i < size; i++) { val = bd[i]; for (j = 0; j < i; j++) { val -= ad[(cs+j)] * bd[j]; } bd[i] = val; cs = (cs + size); } // backsub through diagonal cs = 0; for (i = 0; i < size; i++) { bd[i] /= ad[(cs + i)]; cs = (cs + size); } // backsub through L Transpose i = (size-1); for (; i >= 0; i--) { val = bd[i]; j = (i + 1); cs = (j * size); for (; j < size; j++) { val -= ad[(cs + i)] * bd[j]; cs = (cs + size); } bd[i] = val; } return 1; }, svd_decompose: function(A, W, U, V, options) { if (typeof options === "undefined") { options = 0; }; var at=0,i=0,j=0,_m=A.rows,_n=A.cols,m=_m,n=_n; var dt = A.type | jsfeat.C1_t; // we only work with single channel if(m < n) { at = 1; i = m; m = n; n = i; } var a_buff = jsfeat.cache.get_buffer((m*m)<<3); var w_buff = jsfeat.cache.get_buffer(n<<3); var v_buff = jsfeat.cache.get_buffer((n*n)<<3); var a_mt = new jsfeat.matrix_t(m, m, dt, a_buff.data); var w_mt = new jsfeat.matrix_t(1, n, dt, w_buff.data); var v_mt = new jsfeat.matrix_t(n, n, dt, v_buff.data); if(at == 0) { // transpose jsfeat.matmath.transpose(a_mt, A); } else { for(i = 0; i < _n*_m; i++) { a_mt.data[i] = A.data[i]; } for(; i < n*m; i++) { a_mt.data[i] = 0; } } JacobiSVDImpl(a_mt.data, m, w_mt.data, v_mt.data, n, m, n, m); if(W) { for(i=0; i < n; i++) { W.data[i] = w_mt.data[i]; } for(; i < _n; i++) { W.data[i] = 0; } } if (at == 0) { if(U && (options & jsfeat.SVD_U_T)) { i = m*m; while(--i >= 0) { U.data[i] = a_mt.data[i]; } } else if(U) { jsfeat.matmath.transpose(U, a_mt); } if(V && (options & jsfeat.SVD_V_T)) { i = n*n; while(--i >= 0) { V.data[i] = v_mt.data[i]; } } else if(V) { jsfeat.matmath.transpose(V, v_mt); } } else { if(U && (options & jsfeat.SVD_U_T)) { i = n*n; while(--i >= 0) { U.data[i] = v_mt.data[i]; } } else if(U) { jsfeat.matmath.transpose(U, v_mt); } if(V && (options & jsfeat.SVD_V_T)) { i = m*m; while(--i >= 0) { V.data[i] = a_mt.data[i]; } } else if(V) { jsfeat.matmath.transpose(V, a_mt); } } jsfeat.cache.put_buffer(a_buff); jsfeat.cache.put_buffer(w_buff); jsfeat.cache.put_buffer(v_buff); }, svd_solve: function(A, X, B) { var i=0,j=0,k=0; var pu=0,pv=0; var nrows=A.rows,ncols=A.cols; var sum=0.0,xsum=0.0,tol=0.0; var dt = A.type | jsfeat.C1_t; var u_buff = jsfeat.cache.get_buffer((nrows*nrows)<<3); var w_buff = jsfeat.cache.get_buffer(ncols<<3); var v_buff = jsfeat.cache.get_buffer((ncols*ncols)<<3); var u_mt = new jsfeat.matrix_t(nrows, nrows, dt, u_buff.data); var w_mt = new jsfeat.matrix_t(1, ncols, dt, w_buff.data); var v_mt = new jsfeat.matrix_t(ncols, ncols, dt, v_buff.data); var bd = B.data, ud = u_mt.data, wd = w_mt.data, vd = v_mt.data; this.svd_decompose(A, w_mt, u_mt, v_mt, 0); tol = jsfeat.EPSILON * wd[0] * ncols; for (; i < ncols; i++, pv += ncols) { xsum = 0.0; for(j = 0; j < ncols; j++) { if(wd[j] > tol) { for(k = 0, sum = 0.0, pu = 0; k < nrows; k++, pu += ncols) { sum += ud[pu + j] * bd[k]; } xsum += sum * vd[pv + j] / wd[j]; } } X.data[i] = xsum; } jsfeat.cache.put_buffer(u_buff); jsfeat.cache.put_buffer(w_buff); jsfeat.cache.put_buffer(v_buff); }, svd_invert: function(Ai, A) { var i=0,j=0,k=0; var pu=0,pv=0,pa=0; var nrows=A.rows,ncols=A.cols; var sum=0.0,tol=0.0; var dt = A.type | jsfeat.C1_t; var u_buff = jsfeat.cache.get_buffer((nrows*nrows)<<3); var w_buff = jsfeat.cache.get_buffer(ncols<<3); var v_buff = jsfeat.cache.get_buffer((ncols*ncols)<<3); var u_mt = new jsfeat.matrix_t(nrows, nrows, dt, u_buff.data); var w_mt = new jsfeat.matrix_t(1, ncols, dt, w_buff.data); var v_mt = new jsfeat.matrix_t(ncols, ncols, dt, v_buff.data); var id = Ai.data, ud = u_mt.data, wd = w_mt.data, vd = v_mt.data; this.svd_decompose(A, w_mt, u_mt, v_mt, 0); tol = jsfeat.EPSILON * wd[0] * ncols; for (; i < ncols; i++, pv += ncols) { for (j = 0, pu = 0; j < nrows; j++, pa++) { for (k = 0, sum = 0.0; k < ncols; k++, pu++) { if (wd[k] > tol) sum += vd[pv + k] * ud[pu] / wd[k]; } id[pa] = sum; } } jsfeat.cache.put_buffer(u_buff); jsfeat.cache.put_buffer(w_buff); jsfeat.cache.put_buffer(v_buff); }, eigenVV: function(A, vects, vals) { var n=A.cols,i=n*n; var dt = A.type | jsfeat.C1_t; var a_buff = jsfeat.cache.get_buffer((n*n)<<3); var w_buff = jsfeat.cache.get_buffer(n<<3); var a_mt = new jsfeat.matrix_t(n, n, dt, a_buff.data); var w_mt = new jsfeat.matrix_t(1, n, dt, w_buff.data); while(--i >= 0) { a_mt.data[i] = A.data[i]; } JacobiImpl(a_mt.data, n, w_mt.data, vects ? vects.data : null, n, n); if(vals) { while(--n >= 0) { vals.data[n] = w_mt.data[n]; } } jsfeat.cache.put_buffer(a_buff); jsfeat.cache.put_buffer(w_buff); } }; })(); global.linalg = linalg; })(jsfeat); /** * @author Eugene Zatepyakin / http://inspirit.ru/ * */ (function(global) { "use strict"; // var motion_model = (function() { var sqr = function(x) { return x*x; } // does isotropic normalization var iso_normalize_points = function(from, to, T0, T1, count) { var i=0; var cx0=0.0, cy0=0.0, d0=0.0, s0=0.0; var cx1=0.0, cy1=0.0, d1=0.0, s1=0.0; var dx=0.0,dy=0.0; for (; i < count; ++i) { cx0 += from[i].x; cy0 += from[i].y; cx1 += to[i].x; cy1 += to[i].y; } cx0 /= count; cy0 /= count; cx1 /= count; cy1 /= count; for (i = 0; i < count; ++i) { dx = from[i].x - cx0; dy = from[i].y - cy0; d0 += Math.sqrt(dx*dx + dy*dy); dx = to[i].x - cx1; dy = to[i].y - cy1; d1 += Math.sqrt(dx*dx + dy*dy); } d0 /= count; d1 /= count; s0 = Math.SQRT2 / d0; s1 = Math.SQRT2 / d1; T0[0] = T0[4] = s0; T0[2] = -cx0*s0; T0[5] = -cy0*s0; T0[1] = T0[3] = T0[6] = T0[7] = 0.0; T0[8] = 1.0; T1[0] = T1[4] = s1; T1[2] = -cx1*s1; T1[5] = -cy1*s1; T1[1] = T1[3] = T1[6] = T1[7] = 0.0; T1[8] = 1.0; } var have_collinear_points = function(points, count) { var j=0,k=0,i=(count-1)|0; var dx1=0.0,dy1=0.0,dx2=0.0,dy2=0.0; // check that the i-th selected point does not belong // to a line connecting some previously selected points for(; j < i; ++j) { dx1 = points[j].x - points[i].x; dy1 = points[j].y - points[i].y; for(k = 0; k < j; ++k) { dx2 = points[k].x - points[i].x; dy2 = points[k].y - points[i].y; if( Math.abs(dx2*dy1 - dy2*dx1) <= jsfeat.EPSILON*(Math.abs(dx1) + Math.abs(dy1) + Math.abs(dx2) + Math.abs(dy2))) return true; } } return false; } var T0 = new jsfeat.matrix_t(3, 3, jsfeat.F32_t|jsfeat.C1_t); var T1 = new jsfeat.matrix_t(3, 3, jsfeat.F32_t|jsfeat.C1_t); var AtA = new jsfeat.matrix_t(6, 6, jsfeat.F32_t|jsfeat.C1_t); var AtB = new jsfeat.matrix_t(6, 1, jsfeat.F32_t|jsfeat.C1_t); var affine2d = (function () { function affine2d() { // empty constructor } affine2d.prototype.run = function(from, to, model, count) { var i=0,j=0; var dt=model.type|jsfeat.C1_t; var md=model.data, t0d=T0.data, t1d=T1.data; var pt0,pt1,px=0.0,py=0.0; iso_normalize_points(from, to, t0d, t1d, count); var a_buff = jsfeat.cache.get_buffer((2*count*6)<<3); var b_buff = jsfeat.cache.get_buffer((2*count)<<3); var a_mt = new jsfeat.matrix_t(6, 2*count, dt, a_buff.data); var b_mt = new jsfeat.matrix_t(1, 2*count, dt, b_buff.data); var ad=a_mt.data, bd=b_mt.data; for (; i < count; ++i) { pt0 = from[i]; pt1 = to[i]; px = t0d[0]*pt0.x + t0d[1]*pt0.y + t0d[2]; py = t0d[3]*pt0.x + t0d[4]*pt0.y + t0d[5]; j = i*2*6; ad[j]=px, ad[j+1]=py, ad[j+2]=1.0, ad[j+3]=0.0, ad[j+4]=0.0, ad[j+5]=0.0; j += 6; ad[j]=0.0, ad[j+1]=0.0, ad[j+2]=0.0, ad[j+3]=px, ad[j+4]=py, ad[j+5]=1.0; bd[i<<1] = t1d[0]*pt1.x + t1d[1]*pt1.y + t1d[2]; bd[(i<<1)+1] = t1d[3]*pt1.x + t1d[4]*pt1.y + t1d[5]; } jsfeat.matmath.multiply_AtA(AtA, a_mt); jsfeat.matmath.multiply_AtB(AtB, a_mt, b_mt); jsfeat.linalg.lu_solve(AtA, AtB); md[0] = AtB.data[0], md[1]=AtB.data[1], md[2]=AtB.data[2]; md[3] = AtB.data[3], md[4]=AtB.data[4], md[5]=AtB.data[5]; md[6] = 0.0, md[7] = 0.0, md[8] = 1.0; // fill last row // denormalize jsfeat.matmath.invert_3x3(T1, T1); jsfeat.matmath.multiply_3x3(model, T1, model); jsfeat.matmath.multiply_3x3(model, model, T0); // free buffer jsfeat.cache.put_buffer(a_buff); jsfeat.cache.put_buffer(b_buff); return 1; } affine2d.prototype.error = function(from, to, model, err, count) { var i=0; var pt0,pt1; var m=model.data; for (; i < count; ++i) { pt0 = from[i]; pt1 = to[i]; err[i] = sqr(pt1.x - m[0]*pt0.x - m[1]*pt0.y - m[2]) + sqr(pt1.y - m[3]*pt0.x - m[4]*pt0.y - m[5]); } } affine2d.prototype.check_subset = function(from, to, count) { return true; // all good } return affine2d; })(); var mLtL = new jsfeat.matrix_t(9, 9, jsfeat.F32_t|jsfeat.C1_t); var Evec = new jsfeat.matrix_t(9, 9, jsfeat.F32_t|jsfeat.C1_t); var homography2d = (function () { function homography2d() { // empty constructor //this.T0 = new jsfeat.matrix_t(3, 3, jsfeat.F32_t|jsfeat.C1_t); //this.T1 = new jsfeat.matrix_t(3, 3, jsfeat.F32_t|jsfeat.C1_t); //this.mLtL = new jsfeat.matrix_t(9, 9, jsfeat.F32_t|jsfeat.C1_t); //this.Evec = new jsfeat.matrix_t(9, 9, jsfeat.F32_t|jsfeat.C1_t); } homography2d.prototype.run = function(from, to, model, count) { var i=0,j=0; var md=model.data, t0d=T0.data, t1d=T1.data; var LtL=mLtL.data, evd=Evec.data; var x=0.0,y=0.0,X=0.0,Y=0.0; // norm var smx=0.0, smy=0.0, cmx=0.0, cmy=0.0, sMx=0.0, sMy=0.0, cMx=0.0, cMy=0.0; for(; i < count; ++i) { cmx += to[i].x; cmy += to[i].y; cMx += from[i].x; cMy += from[i].y; } cmx /= count; cmy /= count; cMx /= count; cMy /= count; for(i = 0; i < count; ++i) { smx += Math.abs(to[i].x - cmx); smy += Math.abs(to[i].y - cmy); sMx += Math.abs(from[i].x - cMx); sMy += Math.abs(from[i].y - cMy); } if( Math.abs(smx) < jsfeat.EPSILON || Math.abs(smy) < jsfeat.EPSILON || Math.abs(sMx) < jsfeat.EPSILON || Math.abs(sMy) < jsfeat.EPSILON ) return 0; smx = count/smx; smy = count/smy; sMx = count/sMx; sMy = count/sMy; t0d[0] = sMx; t0d[1] = 0; t0d[2] = -cMx*sMx; t0d[3] = 0; t0d[4] = sMy; t0d[5] = -cMy*sMy; t0d[6] = 0; t0d[7] = 0; t0d[8] = 1; t1d[0] = 1.0/smx; t1d[1] = 0; t1d[2] = cmx; t1d[3] = 0; t1d[4] = 1.0/smy; t1d[5] = cmy; t1d[6] = 0; t1d[7] = 0; t1d[8] = 1; // // construct system i = 81; while(--i >= 0) { LtL[i] = 0.0; } for(i = 0; i < count; ++i) { x = (to[i].x - cmx) * smx; y = (to[i].y - cmy) * smy; X = (from[i].x - cMx) * sMx; Y = (from[i].y - cMy) * sMy; LtL[0] += X*X; LtL[1] += X*Y; LtL[2] += X; LtL[6] += X*-x*X; LtL[7] += X*-x*Y; LtL[8] += X*-x; LtL[10] += Y*Y; LtL[11] += Y; LtL[15] += Y*-x*X; LtL[16] += Y*-x*Y; LtL[17] += Y*-x; LtL[20] += 1.0; LtL[24] += -x*X; LtL[25] += -x*Y; LtL[26] += -x; LtL[30] += X*X; LtL[31] += X*Y; LtL[32] += X; LtL[33] += X*-y*X; LtL[34] += X*-y*Y; LtL[35] += X*-y; LtL[40] += Y*Y; LtL[41] += Y; LtL[42] += Y*-y*X; LtL[43] += Y*-y*Y; LtL[44] += Y*-y; LtL[50] += 1.0; LtL[51] += -y*X; LtL[52] += -y*Y; LtL[53] += -y; LtL[60] += -x*X*-x*X + -y*X*-y*X; LtL[61] += -x*X*-x*Y + -y*X*-y*Y; LtL[62] += -x*X*-x + -y*X*-y; LtL[70] += -x*Y*-x*Y + -y*Y*-y*Y; LtL[71] += -x*Y*-x + -y*Y*-y; LtL[80] += -x*-x + -y*-y; } // // symmetry for(i = 0; i < 9; ++i) { for(j = 0; j < i; ++j) LtL[i*9+j] = LtL[j*9+i]; } jsfeat.linalg.eigenVV(mLtL, Evec); md[0]=evd[72], md[1]=evd[73], md[2]=evd[74]; md[3]=evd[75], md[4]=evd[76], md[5]=evd[77]; md[6]=evd[78], md[7]=evd[79], md[8]=evd[80]; // denormalize jsfeat.matmath.multiply_3x3(model, T1, model); jsfeat.matmath.multiply_3x3(model, model, T0); // set bottom right to 1.0 x = 1.0/md[8]; md[0] *= x; md[1] *= x; md[2] *= x; md[3] *= x; md[4] *= x; md[5] *= x; md[6] *= x; md[7] *= x; md[8] = 1.0; return 1; } homography2d.prototype.error = function(from, to, model, err, count) { var i=0; var pt0,pt1,ww=0.0,dx=0.0,dy=0.0; var m=model.data; for (; i < count; ++i) { pt0 = from[i]; pt1 = to[i]; ww = 1.0/(m[6]*pt0.x + m[7]*pt0.y + 1.0); dx = (m[0]*pt0.x + m[1]*pt0.y + m[2])*ww - pt1.x; dy = (m[3]*pt0.x + m[4]*pt0.y + m[5])*ww - pt1.y; err[i] = (dx*dx + dy*dy); } } homography2d.prototype.check_subset = function(from, to, count) { // seems to reject good subsets actually //if( have_collinear_points(from, count) || have_collinear_points(to, count) ) { //return false; //} if( count == 4 ) { var negative = 0; var fp0=from[0],fp1=from[1],fp2=from[2],fp3=from[3]; var tp0=to[0],tp1=to[1],tp2=to[2],tp3=to[3]; // set1 var A11=fp0.x, A12=fp0.y, A13=1.0; var A21=fp1.x, A22=fp1.y, A23=1.0; var A31=fp2.x, A32=fp2.y, A33=1.0; var B11=tp0.x, B12=tp0.y, B13=1.0; var B21=tp1.x, B22=tp1.y, B23=1.0; var B31=tp2.x, B32=tp2.y, B33=1.0; var detA = jsfeat.matmath.determinant_3x3(A11,A12,A13, A21,A22,A23, A31,A32,A33); var detB = jsfeat.matmath.determinant_3x3(B11,B12,B13, B21,B22,B23, B31,B32,B33); if(detA*detB < 0) negative++; // set2 A11=fp1.x, A12=fp1.y; A21=fp2.x, A22=fp2.y; A31=fp3.x, A32=fp3.y; B11=tp1.x, B12=tp1.y; B21=tp2.x, B22=tp2.y; B31=tp3.x, B32=tp3.y; detA = jsfeat.matmath.determinant_3x3(A11,A12,A13, A21,A22,A23, A31,A32,A33); detB = jsfeat.matmath.determinant_3x3(B11,B12,B13, B21,B22,B23, B31,B32,B33); if(detA*detB < 0) negative++; // set3 A11=fp0.x, A12=fp0.y; A21=fp2.x, A22=fp2.y; A31=fp3.x, A32=fp3.y; B11=tp0.x, B12=tp0.y; B21=tp2.x, B22=tp2.y; B31=tp3.x, B32=tp3.y; detA = jsfeat.matmath.determinant_3x3(A11,A12,A13, A21,A22,A23, A31,A32,A33); detB = jsfeat.matmath.determinant_3x3(B11,B12,B13, B21,B22,B23, B31,B32,B33); if(detA*detB < 0) negative++; // set4 A11=fp0.x, A12=fp0.y; A21=fp1.x, A22=fp1.y; A31=fp3.x, A32=fp3.y; B11=tp0.x, B12=tp0.y; B21=tp1.x, B22=tp1.y; B31=tp3.x, B32=tp3.y; detA = jsfeat.matmath.determinant_3x3(A11,A12,A13, A21,A22,A23, A31,A32,A33); detB = jsfeat.matmath.determinant_3x3(B11,B12,B13, B21,B22,B23, B31,B32,B33); if(detA*detB < 0) negative++; if(negative != 0 && negative != 4) { return false; } } return true; // all good } return homography2d; })(); return { affine2d:affine2d, homography2d:homography2d }; })(); var ransac_params_t = (function () { function ransac_params_t(size, thresh, eps, prob) { if (typeof size === "undefined") { size=0; } if (typeof thresh === "undefined") { thresh=0.5; } if (typeof eps === "undefined") { eps=0.5; } if (typeof prob === "undefined") { prob=0.99; } this.size = size; this.thresh = thresh; this.eps = eps; this.prob = prob; }; ransac_params_t.prototype.update_iters = function(_eps, max_iters) { var num = Math.log(1 - this.prob); var denom = Math.log(1 - Math.pow(1 - _eps, this.size)); return (denom >= 0 || -num >= max_iters*(-denom) ? max_iters : Math.round(num/denom))|0; }; return ransac_params_t; })(); var motion_estimator = (function() { var get_subset = function(kernel, from, to, need_cnt, max_cnt, from_sub, to_sub) { var max_try = 1000; var indices = []; var i=0, j=0, ssiter=0, idx_i=0, ok=false; for(; ssiter < max_try; ++ssiter) { i = 0; for (; i < need_cnt && ssiter < max_try;) { ok = false; idx_i = 0; while (!ok) { ok = true; idx_i = indices[i] = Math.floor(Math.random() * max_cnt)|0; for (j = 0; j < i; ++j) { if (idx_i == indices[j]) { ok = false; break; } } } from_sub[i] = from[idx_i]; to_sub[i] = to[idx_i]; if( !kernel.check_subset( from_sub, to_sub, i+1 ) ) { ssiter++; continue; } ++i; } break; } return (i == need_cnt && ssiter < max_try); } var find_inliers = function(kernel, model, from, to, count, thresh, err, mask) { var numinliers = 0, i=0, f=0; var t = thresh*thresh; kernel.error(from, to, model, err, count); for(; i < count; ++i) { f = err[i] <= t; mask[i] = f; numinliers += f; } return numinliers; } return { ransac: function(params, kernel, from, to, count, model, mask, max_iters) { if (typeof max_iters === "undefined") { max_iters=1000; } if(count < params.size) return false; var model_points = params.size; var niters = max_iters, iter=0; var result = false; var subset0 = []; var subset1 = []; var found = false; var mc=model.cols,mr=model.rows; var dt = model.type | jsfeat.C1_t; var m_buff = jsfeat.cache.get_buffer((mc*mr)<<3); var ms_buff = jsfeat.cache.get_buffer(count); var err_buff = jsfeat.cache.get_buffer(count<<2); var M = new jsfeat.matrix_t(mc, mr, dt, m_buff.data); var curr_mask = new jsfeat.matrix_t(count, 1, jsfeat.U8C1_t, ms_buff.data); var inliers_max = -1, numinliers=0; var nmodels = 0; var err = err_buff.f32; // special case if(count == model_points) { if(kernel.run(from, to, M, count) <= 0) { jsfeat.cache.put_buffer(m_buff); jsfeat.cache.put_buffer(ms_buff); jsfeat.cache.put_buffer(err_buff); return false; } M.copy_to(model); if(mask) { while(--count >= 0) { mask.data[count] = 1; } } jsfeat.cache.put_buffer(m_buff); jsfeat.cache.put_buffer(ms_buff); jsfeat.cache.put_buffer(err_buff); return true; } for (; iter < niters; ++iter) { // generate subset found = get_subset(kernel, from, to, model_points, count, subset0, subset1); if(!found) { if(iter == 0) { jsfeat.cache.put_buffer(m_buff); jsfeat.cache.put_buffer(ms_buff); jsfeat.cache.put_buffer(err_buff); return false; } break; } nmodels = kernel.run( subset0, subset1, M, model_points ); if(nmodels <= 0) continue; // TODO handle multimodel output numinliers = find_inliers(kernel, M, from, to, count, params.thresh, err, curr_mask.data); if( numinliers > Math.max(inliers_max, model_points-1) ) { M.copy_to(model); inliers_max = numinliers; if(mask) curr_mask.copy_to(mask); niters = params.update_iters((count - numinliers)/count, niters); result = true; } } jsfeat.cache.put_buffer(m_buff); jsfeat.cache.put_buffer(ms_buff); jsfeat.cache.put_buffer(err_buff); return result; }, lmeds: function(params, kernel, from, to, count, model, mask, max_iters) { if (typeof max_iters === "undefined") { max_iters=1000; } if(count < params.size) return false; var model_points = params.size; var niters = max_iters, iter=0; var result = false; var subset0 = []; var subset1 = []; var found = false; var mc=model.cols,mr=model.rows; var dt = model.type | jsfeat.C1_t; var m_buff = jsfeat.cache.get_buffer((mc*mr)<<3); var ms_buff = jsfeat.cache.get_buffer(count); var err_buff = jsfeat.cache.get_buffer(count<<2); var M = new jsfeat.matrix_t(mc, mr, dt, m_buff.data); var curr_mask = new jsfeat.matrix_t(count, 1, jsfeat.U8_t|jsfeat.C1_t, ms_buff.data); var numinliers=0; var nmodels = 0; var err = err_buff.f32; var min_median = 1000000000.0, sigma=0.0, median=0.0; params.eps = 0.45; niters = params.update_iters(params.eps, niters); // special case if(count == model_points) { if(kernel.run(from, to, M, count) <= 0) { jsfeat.cache.put_buffer(m_buff); jsfeat.cache.put_buffer(ms_buff); jsfeat.cache.put_buffer(err_buff); return false; } M.copy_to(model); if(mask) { while(--count >= 0) { mask.data[count] = 1; } } jsfeat.cache.put_buffer(m_buff); jsfeat.cache.put_buffer(ms_buff); jsfeat.cache.put_buffer(err_buff); return true; } for (; iter < niters; ++iter) { // generate subset found = get_subset(kernel, from, to, model_points, count, subset0, subset1); if(!found) { if(iter == 0) { jsfeat.cache.put_buffer(m_buff); jsfeat.cache.put_buffer(ms_buff); jsfeat.cache.put_buffer(err_buff); return false; } break; } nmodels = kernel.run( subset0, subset1, M, model_points ); if(nmodels <= 0) continue; // TODO handle multimodel output kernel.error(from, to, M, err, count); median = jsfeat.math.median(err, 0, count-1); if(median < min_median) { min_median = median; M.copy_to(model); result = true; } } if(result) { sigma = 2.5*1.4826*(1 + 5.0/(count - model_points))*Math.sqrt(min_median); sigma = Math.max(sigma, 0.001); numinliers = find_inliers(kernel, model, from, to, count, sigma, err, curr_mask.data); if(mask) curr_mask.copy_to(mask); result = numinliers >= model_points; } jsfeat.cache.put_buffer(m_buff); jsfeat.cache.put_buffer(ms_buff); jsfeat.cache.put_buffer(err_buff); return result; } }; })(); global.ransac_params_t = ransac_params_t; global.motion_model = motion_model; global.motion_estimator = motion_estimator; })(jsfeat); /** * @author Eugene Zatepyakin / http://inspirit.ru/ */ (function(global) { "use strict"; // var imgproc = (function() { var _resample_u8 = function(src, dst, nw, nh) { var xofs_count=0; var ch=src.channel,w=src.cols,h=src.rows; var src_d=src.data,dst_d=dst.data; var scale_x = w / nw, scale_y = h / nh; var inv_scale_256 = (scale_x * scale_y * 0x10000)|0; var dx=0,dy=0,sx=0,sy=0,sx1=0,sx2=0,i=0,k=0,fsx1=0.0,fsx2=0.0; var a=0,b=0,dxn=0,alpha=0,beta=0,beta1=0; var buf_node = jsfeat.cache.get_buffer((nw*ch)<<2); var sum_node = jsfeat.cache.get_buffer((nw*ch)<<2); var xofs_node = jsfeat.cache.get_buffer((w*2*3)<<2); var buf = buf_node.i32; var sum = sum_node.i32; var xofs = xofs_node.i32; for (; dx < nw; dx++) { fsx1 = dx * scale_x, fsx2 = fsx1 + scale_x; sx1 = (fsx1 + 1.0 - 1e-6)|0, sx2 = fsx2|0; sx1 = Math.min(sx1, w - 1); sx2 = Math.min(sx2, w - 1); if(sx1 > fsx1) { xofs[k++] = (dx * ch)|0; xofs[k++] = ((sx1 - 1)*ch)|0; xofs[k++] = ((sx1 - fsx1) * 0x100)|0; xofs_count++; } for(sx = sx1; sx < sx2; sx++){ xofs_count++; xofs[k++] = (dx * ch)|0; xofs[k++] = (sx * ch)|0; xofs[k++] = 256; } if(fsx2 - sx2 > 1e-3) { xofs_count++; xofs[k++] = (dx * ch)|0; xofs[k++] = (sx2 * ch)|0; xofs[k++] = ((fsx2 - sx2) * 256)|0; } } for (dx = 0; dx < nw * ch; dx++) { buf[dx] = sum[dx] = 0; } dy = 0; for (sy = 0; sy < h; sy++) { a = w * sy; for (k = 0; k < xofs_count; k++) { dxn = xofs[k*3]; sx1 = xofs[k*3+1]; alpha = xofs[k*3+2]; for (i = 0; i < ch; i++) { buf[dxn + i] += src_d[a+sx1+i] * alpha; } } if ((dy + 1) * scale_y <= sy + 1 || sy == h - 1) { beta = (Math.max(sy + 1 - (dy + 1) * scale_y, 0.0) * 256)|0; beta1 = 256 - beta; b = nw * dy; if (beta <= 0) { for (dx = 0; dx < nw * ch; dx++) { dst_d[b+dx] = Math.min(Math.max((sum[dx] + buf[dx] * 256) / inv_scale_256, 0), 255); sum[dx] = buf[dx] = 0; } } else { for (dx = 0; dx < nw * ch; dx++) { dst_d[b+dx] = Math.min(Math.max((sum[dx] + buf[dx] * beta1) / inv_scale_256, 0), 255); sum[dx] = buf[dx] * beta; buf[dx] = 0; } } dy++; } else { for(dx = 0; dx < nw * ch; dx++) { sum[dx] += buf[dx] * 256; buf[dx] = 0; } } } jsfeat.cache.put_buffer(sum_node); jsfeat.cache.put_buffer(buf_node); jsfeat.cache.put_buffer(xofs_node); } var _resample = function(src, dst, nw, nh) { var xofs_count=0; var ch=src.channel,w=src.cols,h=src.rows; var src_d=src.data,dst_d=dst.data; var scale_x = w / nw, scale_y = h / nh; var scale = 1.0 / (scale_x * scale_y); var dx=0,dy=0,sx=0,sy=0,sx1=0,sx2=0,i=0,k=0,fsx1=0.0,fsx2=0.0; var a=0,b=0,dxn=0,alpha=0.0,beta=0.0,beta1=0.0; var buf_node = jsfeat.cache.get_buffer((nw*ch)<<2); var sum_node = jsfeat.cache.get_buffer((nw*ch)<<2); var xofs_node = jsfeat.cache.get_buffer((w*2*3)<<2); var buf = buf_node.f32; var sum = sum_node.f32; var xofs = xofs_node.f32; for (; dx < nw; dx++) { fsx1 = dx * scale_x, fsx2 = fsx1 + scale_x; sx1 = (fsx1 + 1.0 - 1e-6)|0, sx2 = fsx2|0; sx1 = Math.min(sx1, w - 1); sx2 = Math.min(sx2, w - 1); if(sx1 > fsx1) { xofs_count++; xofs[k++] = ((sx1 - 1)*ch)|0; xofs[k++] = (dx * ch)|0; xofs[k++] = (sx1 - fsx1) * scale; } for(sx = sx1; sx < sx2; sx++){ xofs_count++; xofs[k++] = (sx * ch)|0; xofs[k++] = (dx * ch)|0; xofs[k++] = scale; } if(fsx2 - sx2 > 1e-3) { xofs_count++; xofs[k++] = (sx2 * ch)|0; xofs[k++] = (dx * ch)|0; xofs[k++] = (fsx2 - sx2) * scale; } } for (dx = 0; dx < nw * ch; dx++) { buf[dx] = sum[dx] = 0; } dy = 0; for (sy = 0; sy < h; sy++) { a = w * sy; for (k = 0; k < xofs_count; k++) { sx1 = xofs[k*3]|0; dxn = xofs[k*3+1]|0; alpha = xofs[k*3+2]; for (i = 0; i < ch; i++) { buf[dxn + i] += src_d[a+sx1+i] * alpha; } } if ((dy + 1) * scale_y <= sy + 1 || sy == h - 1) { beta = Math.max(sy + 1 - (dy + 1) * scale_y, 0.0); beta1 = 1.0 - beta; b = nw * dy; if (Math.abs(beta) < 1e-3) { for (dx = 0; dx < nw * ch; dx++) { dst_d[b+dx] = sum[dx] + buf[dx]; sum[dx] = buf[dx] = 0; } } else { for (dx = 0; dx < nw * ch; dx++) { dst_d[b+dx] = sum[dx] + buf[dx] * beta1; sum[dx] = buf[dx] * beta; buf[dx] = 0; } } dy++; } else { for(dx = 0; dx < nw * ch; dx++) { sum[dx] += buf[dx]; buf[dx] = 0; } } } jsfeat.cache.put_buffer(sum_node); jsfeat.cache.put_buffer(buf_node); jsfeat.cache.put_buffer(xofs_node); } var _convol_u8 = function(buf, src_d, dst_d, w, h, filter, kernel_size, half_kernel) { var i=0,j=0,k=0,sp=0,dp=0,sum=0,sum1=0,sum2=0,sum3=0,f0=filter[0],fk=0; var w2=w<<1,w3=w*3,w4=w<<2; // hor pass for (; i < h; ++i) { sum = src_d[sp]; for (j = 0; j < half_kernel; ++j) { buf[j] = sum; } for (j = 0; j <= w-2; j+=2) { buf[j + half_kernel] = src_d[sp+j]; buf[j + half_kernel+1] = src_d[sp+j+1]; } for (; j < w; ++j) { buf[j + half_kernel] = src_d[sp+j]; } sum = src_d[sp+w-1]; for (j = w; j < half_kernel + w; ++j) { buf[j + half_kernel] = sum; } for (j = 0; j <= w-4; j+=4) { sum = buf[j] * f0, sum1 = buf[j+1] * f0, sum2 = buf[j+2] * f0, sum3 = buf[j+3] * f0; for (k = 1; k < kernel_size; ++k) { fk = filter[k]; sum += buf[k + j] * fk; sum1 += buf[k + j+1] * fk; sum2 += buf[k + j+2] * fk; sum3 += buf[k + j+3] * fk; } dst_d[dp+j] = Math.min(sum >> 8, 255); dst_d[dp+j+1] = Math.min(sum1 >> 8, 255); dst_d[dp+j+2] = Math.min(sum2 >> 8, 255); dst_d[dp+j+3] = Math.min(sum3 >> 8, 255); } for (; j < w; ++j) { sum = buf[j] * f0; for (k = 1; k < kernel_size; ++k) { sum += buf[k + j] * filter[k]; } dst_d[dp+j] = Math.min(sum >> 8, 255); } sp += w; dp += w; } // vert pass for (i = 0; i < w; ++i) { sum = dst_d[i]; for (j = 0; j < half_kernel; ++j) { buf[j] = sum; } k = i; for (j = 0; j <= h-2; j+=2, k+=w2) { buf[j+half_kernel] = dst_d[k]; buf[j+half_kernel+1] = dst_d[k+w]; } for (; j < h; ++j, k+=w) { buf[j+half_kernel] = dst_d[k]; } sum = dst_d[(h-1)*w + i]; for (j = h; j < half_kernel + h; ++j) { buf[j + half_kernel] = sum; } dp = i; for (j = 0; j <= h-4; j+=4, dp+=w4) { sum = buf[j] * f0, sum1 = buf[j+1] * f0, sum2 = buf[j+2] * f0, sum3 = buf[j+3] * f0; for (k = 1; k < kernel_size; ++k) { fk = filter[k]; sum += buf[k + j] * fk; sum1 += buf[k + j+1] * fk; sum2 += buf[k + j+2] * fk; sum3 += buf[k + j+3] * fk; } dst_d[dp] = Math.min(sum >> 8, 255); dst_d[dp+w] = Math.min(sum1 >> 8, 255); dst_d[dp+w2] = Math.min(sum2 >> 8, 255); dst_d[dp+w3] = Math.min(sum3 >> 8, 255); } for (; j < h; ++j, dp+=w) { sum = buf[j] * f0; for (k = 1; k < kernel_size; ++k) { sum += buf[k + j] * filter[k]; } dst_d[dp] = Math.min(sum >> 8, 255); } } } var _convol = function(buf, src_d, dst_d, w, h, filter, kernel_size, half_kernel) { var i=0,j=0,k=0,sp=0,dp=0,sum=0.0,sum1=0.0,sum2=0.0,sum3=0.0,f0=filter[0],fk=0.0; var w2=w<<1,w3=w*3,w4=w<<2; // hor pass for (; i < h; ++i) { sum = src_d[sp]; for (j = 0; j < half_kernel; ++j) { buf[j] = sum; } for (j = 0; j <= w-2; j+=2) { buf[j + half_kernel] = src_d[sp+j]; buf[j + half_kernel+1] = src_d[sp+j+1]; } for (; j < w; ++j) { buf[j + half_kernel] = src_d[sp+j]; } sum = src_d[sp+w-1]; for (j = w; j < half_kernel + w; ++j) { buf[j + half_kernel] = sum; } for (j = 0; j <= w-4; j+=4) { sum = buf[j] * f0, sum1 = buf[j+1] * f0, sum2 = buf[j+2] * f0, sum3 = buf[j+3] * f0; for (k = 1; k < kernel_size; ++k) { fk = filter[k]; sum += buf[k + j] * fk; sum1 += buf[k + j+1] * fk; sum2 += buf[k + j+2] * fk; sum3 += buf[k + j+3] * fk; } dst_d[dp+j] = sum; dst_d[dp+j+1] = sum1; dst_d[dp+j+2] = sum2; dst_d[dp+j+3] = sum3; } for (; j < w; ++j) { sum = buf[j] * f0; for (k = 1; k < kernel_size; ++k) { sum += buf[k + j] * filter[k]; } dst_d[dp+j] = sum; } sp += w; dp += w; } // vert pass for (i = 0; i < w; ++i) { sum = dst_d[i]; for (j = 0; j < half_kernel; ++j) { buf[j] = sum; } k = i; for (j = 0; j <= h-2; j+=2, k+=w2) { buf[j+half_kernel] = dst_d[k]; buf[j+half_kernel+1] = dst_d[k+w]; } for (; j < h; ++j, k+=w) { buf[j+half_kernel] = dst_d[k]; } sum = dst_d[(h-1)*w + i]; for (j = h; j < half_kernel + h; ++j) { buf[j + half_kernel] = sum; } dp = i; for (j = 0; j <= h-4; j+=4, dp+=w4) { sum = buf[j] * f0, sum1 = buf[j+1] * f0, sum2 = buf[j+2] * f0, sum3 = buf[j+3] * f0; for (k = 1; k < kernel_size; ++k) { fk = filter[k]; sum += buf[k + j] * fk; sum1 += buf[k + j+1] * fk; sum2 += buf[k + j+2] * fk; sum3 += buf[k + j+3] * fk; } dst_d[dp] = sum; dst_d[dp+w] = sum1; dst_d[dp+w2] = sum2; dst_d[dp+w3] = sum3; } for (; j < h; ++j, dp+=w) { sum = buf[j] * f0; for (k = 1; k < kernel_size; ++k) { sum += buf[k + j] * filter[k]; } dst_d[dp] = sum; } } } return { // TODO: add support for RGB/BGR order // for raw arrays grayscale: function(src, w, h, dst, code) { // this is default image data representation in browser if (typeof code === "undefined") { code = jsfeat.COLOR_RGBA2GRAY; } var x=0, y=0, i=0, j=0, ir=0,jr=0; var coeff_r = 4899, coeff_g = 9617, coeff_b = 1868, cn = 4; if(code == jsfeat.COLOR_BGRA2GRAY || code == jsfeat.COLOR_BGR2GRAY) { coeff_r = 1868; coeff_b = 4899; } if(code == jsfeat.COLOR_RGB2GRAY || code == jsfeat.COLOR_BGR2GRAY) { cn = 3; } var cn2 = cn<<1, cn3 = (cn*3)|0; dst.resize(w, h, 1); var dst_u8 = dst.data; for(y = 0; y < h; ++y, j+=w, i+=w*cn) { for(x = 0, ir = i, jr = j; x <= w-4; x+=4, ir+=cn<<2, jr+=4) { dst_u8[jr] = (src[ir] * coeff_r + src[ir+1] * coeff_g + src[ir+2] * coeff_b + 8192) >> 14; dst_u8[jr + 1] = (src[ir+cn] * coeff_r + src[ir+cn+1] * coeff_g + src[ir+cn+2] * coeff_b + 8192) >> 14; dst_u8[jr + 2] = (src[ir+cn2] * coeff_r + src[ir+cn2+1] * coeff_g + src[ir+cn2+2] * coeff_b + 8192) >> 14; dst_u8[jr + 3] = (src[ir+cn3] * coeff_r + src[ir+cn3+1] * coeff_g + src[ir+cn3+2] * coeff_b + 8192) >> 14; } for (; x < w; ++x, ++jr, ir+=cn) { dst_u8[jr] = (src[ir] * coeff_r + src[ir+1] * coeff_g + src[ir+2] * coeff_b + 8192) >> 14; } } }, // derived from CCV library resample: function(src, dst, nw, nh) { var h=src.rows,w=src.cols; if (h > nh && w > nw) { dst.resize(nw, nh, src.channel); // using the fast alternative (fix point scale, 0x100 to avoid overflow) if (src.type&jsfeat.U8_t && dst.type&jsfeat.U8_t && h * w / (nh * nw) < 0x100) { _resample_u8(src, dst, nw, nh); } else { _resample(src, dst, nw, nh); } } }, box_blur_gray: function(src, dst, radius, options) { if (typeof options === "undefined") { options = 0; } var w=src.cols, h=src.rows, h2=h<<1, w2=w<<1; var i=0,x=0,y=0,end=0; var windowSize = ((radius << 1) + 1)|0; var radiusPlusOne = (radius + 1)|0, radiusPlus2 = (radiusPlusOne+1)|0; var scale = options&jsfeat.BOX_BLUR_NOSCALE ? 1 : (1.0 / (windowSize*windowSize)); var tmp_buff = jsfeat.cache.get_buffer((w*h)<<2); var sum=0, dstIndex=0, srcIndex = 0, nextPixelIndex=0, previousPixelIndex=0; var data_i32 = tmp_buff.i32; // to prevent overflow var data_u8 = src.data; var hold=0; dst.resize(w, h, src.channel); // first pass // no need to scale //data_u8 = src.data; //data_i32 = tmp; for (y = 0; y < h; ++y) { dstIndex = y; sum = radiusPlusOne * data_u8[srcIndex]; for(i = (srcIndex+1)|0, end=(srcIndex+radius)|0; i <= end; ++i) { sum += data_u8[i]; } nextPixelIndex = (srcIndex + radiusPlusOne)|0; previousPixelIndex = srcIndex; hold = data_u8[previousPixelIndex]; for(x = 0; x < radius; ++x, dstIndex += h) { data_i32[dstIndex] = sum; sum += data_u8[nextPixelIndex]- hold; nextPixelIndex ++; } for(; x < w-radiusPlus2; x+=2, dstIndex += h2) { data_i32[dstIndex] = sum; sum += data_u8[nextPixelIndex]- data_u8[previousPixelIndex]; data_i32[dstIndex+h] = sum; sum += data_u8[nextPixelIndex+1]- data_u8[previousPixelIndex+1]; nextPixelIndex +=2; previousPixelIndex +=2; } for(; x < w-radiusPlusOne; ++x, dstIndex += h) { data_i32[dstIndex] = sum; sum += data_u8[nextPixelIndex]- data_u8[previousPixelIndex]; nextPixelIndex ++; previousPixelIndex ++; } hold = data_u8[nextPixelIndex-1]; for(; x < w; ++x, dstIndex += h) { data_i32[dstIndex] = sum; sum += hold- data_u8[previousPixelIndex]; previousPixelIndex ++; } srcIndex += w; } // // second pass srcIndex = 0; //data_i32 = tmp; // this is a transpose data_u8 = dst.data; // dont scale result if(scale == 1) { for (y = 0; y < w; ++y) { dstIndex = y; sum = radiusPlusOne * data_i32[srcIndex]; for(i = (srcIndex+1)|0, end=(srcIndex+radius)|0; i <= end; ++i) { sum += data_i32[i]; } nextPixelIndex = srcIndex + radiusPlusOne; previousPixelIndex = srcIndex; hold = data_i32[previousPixelIndex]; for(x = 0; x < radius; ++x, dstIndex += w) { data_u8[dstIndex] = sum; sum += data_i32[nextPixelIndex]- hold; nextPixelIndex ++; } for(; x < h-radiusPlus2; x+=2, dstIndex += w2) { data_u8[dstIndex] = sum; sum += data_i32[nextPixelIndex]- data_i32[previousPixelIndex]; data_u8[dstIndex+w] = sum; sum += data_i32[nextPixelIndex+1]- data_i32[previousPixelIndex+1]; nextPixelIndex +=2; previousPixelIndex +=2; } for(; x < h-radiusPlusOne; ++x, dstIndex += w) { data_u8[dstIndex] = sum; sum += data_i32[nextPixelIndex]- data_i32[previousPixelIndex]; nextPixelIndex ++; previousPixelIndex ++; } hold = data_i32[nextPixelIndex-1]; for(; x < h; ++x, dstIndex += w) { data_u8[dstIndex] = sum; sum += hold- data_i32[previousPixelIndex]; previousPixelIndex ++; } srcIndex += h; } } else { for (y = 0; y < w; ++y) { dstIndex = y; sum = radiusPlusOne * data_i32[srcIndex]; for(i = (srcIndex+1)|0, end=(srcIndex+radius)|0; i <= end; ++i) { sum += data_i32[i]; } nextPixelIndex = srcIndex + radiusPlusOne; previousPixelIndex = srcIndex; hold = data_i32[previousPixelIndex]; for(x = 0; x < radius; ++x, dstIndex += w) { data_u8[dstIndex] = sum*scale; sum += data_i32[nextPixelIndex]- hold; nextPixelIndex ++; } for(; x < h-radiusPlus2; x+=2, dstIndex += w2) { data_u8[dstIndex] = sum*scale; sum += data_i32[nextPixelIndex]- data_i32[previousPixelIndex]; data_u8[dstIndex+w] = sum*scale; sum += data_i32[nextPixelIndex+1]- data_i32[previousPixelIndex+1]; nextPixelIndex +=2; previousPixelIndex +=2; } for(; x < h-radiusPlusOne; ++x, dstIndex += w) { data_u8[dstIndex] = sum*scale; sum += data_i32[nextPixelIndex]- data_i32[previousPixelIndex]; nextPixelIndex ++; previousPixelIndex ++; } hold = data_i32[nextPixelIndex-1]; for(; x < h; ++x, dstIndex += w) { data_u8[dstIndex] = sum*scale; sum += hold- data_i32[previousPixelIndex]; previousPixelIndex ++; } srcIndex += h; } } jsfeat.cache.put_buffer(tmp_buff); }, gaussian_blur: function(src, dst, kernel_size, sigma) { if (typeof sigma === "undefined") { sigma = 0.0; } if (typeof kernel_size === "undefined") { kernel_size = 0; } kernel_size = kernel_size == 0 ? (Math.max(1, (4.0 * sigma + 1.0 - 1e-8)) * 2 + 1)|0 : kernel_size; var half_kernel = kernel_size >> 1; var w = src.cols, h = src.rows; var data_type = src.type, is_u8 = data_type&jsfeat.U8_t; dst.resize(w, h, src.channel); var src_d = src.data, dst_d = dst.data; var buf,filter,buf_sz=(kernel_size + Math.max(h, w))|0; var buf_node = jsfeat.cache.get_buffer(buf_sz<<2); var filt_node = jsfeat.cache.get_buffer(kernel_size<<2); if(is_u8) { buf = buf_node.i32; filter = filt_node.i32; } else if(data_type&jsfeat.S32_t) { buf = buf_node.i32; filter = filt_node.f32; } else { buf = buf_node.f32; filter = filt_node.f32; } jsfeat.math.get_gaussian_kernel(kernel_size, sigma, filter, data_type); if(is_u8) { _convol_u8(buf, src_d, dst_d, w, h, filter, kernel_size, half_kernel); } else { _convol(buf, src_d, dst_d, w, h, filter, kernel_size, half_kernel); } jsfeat.cache.put_buffer(buf_node); jsfeat.cache.put_buffer(filt_node); }, hough_transform: function( img, rho_res, theta_res, threshold ) { var image = img.data; var width = img.cols; var height = img.rows; var step = width; min_theta = 0.0; max_theta = Math.PI; numangle = Math.round((max_theta - min_theta) / theta_res); numrho = Math.round(((width + height) * 2 + 1) / rho_res); irho = 1.0 / rho_res; var accum = new Int32Array((numangle+2) * (numrho+2)); //typed arrays are initialized to 0 var tabSin = new Float32Array(numangle); var tabCos = new Float32Array(numangle); var n=0; var ang = min_theta; for(; n < numangle; n++ ) { tabSin[n] = Math.sin(ang) * irho; tabCos[n] = Math.cos(ang) * irho; ang += theta_res } // stage 1. fill accumulator for( var i = 0; i < height; i++ ) { for( var j = 0; j < width; j++ ) { if( image[i * step + j] != 0 ) { //console.log(r, (n+1) * (numrho+2) + r+1, tabCos[n], tabSin[n]); for(var n = 0; n < numangle; n++ ) { var r = Math.round( j * tabCos[n] + i * tabSin[n] ); r += (numrho - 1) / 2; accum[(n+1) * (numrho+2) + r+1] += 1; } } } } // stage 2. find local maximums //TODO: Consider making a vector class that uses typed arrays _sort_buf = new Array(); for(var r = 0; r < numrho; r++ ) { for(var n = 0; n < numangle; n++ ) { var base = (n+1) * (numrho+2) + r+1; if( accum[base] > threshold && accum[base] > accum[base - 1] && accum[base] >= accum[base + 1] && accum[base] > accum[base - numrho - 2] && accum[base] >= accum[base + numrho + 2] ) { _sort_buf.push(base); } } } // stage 3. sort the detected lines by accumulator value _sort_buf.sort(function(l1, l2) { return accum[l1] > accum[l2] || (accum[l1] == accum[l2] && l1 < l2); }); // stage 4. store the first min(total,linesMax) lines to the output buffer linesMax = Math.min(numangle*numrho, _sort_buf.length); scale = 1.0 / (numrho+2); lines = new Array(); for( var i = 0; i < linesMax; i++ ) { var idx = _sort_buf[i]; var n = Math.floor(idx*scale) - 1; var r = idx - (n+1)*(numrho+2) - 1; var lrho = (r - (numrho - 1)*0.5) * rho_res; var langle = n * theta_res; lines.push([lrho, langle]); } return lines; }, // assume we always need it for u8 image pyrdown: function(src, dst, sx, sy) { // this is needed for bbf if (typeof sx === "undefined") { sx = 0; } if (typeof sy === "undefined") { sy = 0; } var w = src.cols, h = src.rows; var w2 = w >> 1, h2 = h >> 1; var _w2 = w2 - (sx << 1), _h2 = h2 - (sy << 1); var x=0,y=0,sptr=sx+sy*w,sline=0,dptr=0,dline=0; dst.resize(w2, h2, src.channel); var src_d = src.data, dst_d = dst.data; for(y = 0; y < _h2; ++y) { sline = sptr; dline = dptr; for(x = 0; x <= _w2-2; x+=2, dline+=2, sline += 4) { dst_d[dline] = (src_d[sline] + src_d[sline+1] + src_d[sline+w] + src_d[sline+w+1] + 2) >> 2; dst_d[dline+1] = (src_d[sline+2] + src_d[sline+3] + src_d[sline+w+2] + src_d[sline+w+3] + 2) >> 2; } for(; x < _w2; ++x, ++dline, sline += 2) { dst_d[dline] = (src_d[sline] + src_d[sline+1] + src_d[sline+w] + src_d[sline+w+1] + 2) >> 2; } sptr += w << 1; dptr += w2; } }, // dst: [gx,gy,...] scharr_derivatives: function(src, dst) { var w = src.cols, h = src.rows; var dstep = w<<1,x=0,y=0,x1=0,a,b,c,d,e,f; var srow0=0,srow1=0,srow2=0,drow=0; var trow0,trow1; dst.resize(w, h, 2); // 2 channel output gx, gy var img = src.data, gxgy=dst.data; var buf0_node = jsfeat.cache.get_buffer((w+2)<<2); var buf1_node = jsfeat.cache.get_buffer((w+2)<<2); if(src.type&jsfeat.U8_t || src.type&jsfeat.S32_t) { trow0 = buf0_node.i32; trow1 = buf1_node.i32; } else { trow0 = buf0_node.f32; trow1 = buf1_node.f32; } for(; y < h; ++y, srow1+=w) { srow0 = ((y > 0 ? y-1 : 1)*w)|0; srow2 = ((y < h-1 ? y+1 : h-2)*w)|0; drow = (y*dstep)|0; // do vertical convolution for(x = 0, x1 = 1; x <= w-2; x+=2, x1+=2) { a = img[srow0+x], b = img[srow2+x]; trow0[x1] = ( (a + b)*3 + (img[srow1+x])*10 ); trow1[x1] = ( b - a ); // a = img[srow0+x+1], b = img[srow2+x+1]; trow0[x1+1] = ( (a + b)*3 + (img[srow1+x+1])*10 ); trow1[x1+1] = ( b - a ); } for(; x < w; ++x, ++x1) { a = img[srow0+x], b = img[srow2+x]; trow0[x1] = ( (a + b)*3 + (img[srow1+x])*10 ); trow1[x1] = ( b - a ); } // make border x = (w + 1)|0; trow0[0] = trow0[1]; trow0[x] = trow0[w]; trow1[0] = trow1[1]; trow1[x] = trow1[w]; // do horizontal convolution, interleave the results and store them for(x = 0; x <= w-4; x+=4) { a = trow1[x+2], b = trow1[x+1], c = trow1[x+3], d = trow1[x+4], e = trow0[x+2], f = trow0[x+3]; gxgy[drow++] = ( e - trow0[x] ); gxgy[drow++] = ( (a + trow1[x])*3 + b*10 ); gxgy[drow++] = ( f - trow0[x+1] ); gxgy[drow++] = ( (c + b)*3 + a*10 ); gxgy[drow++] = ( (trow0[x+4] - e) ); gxgy[drow++] = ( ((d + a)*3 + c*10) ); gxgy[drow++] = ( (trow0[x+5] - f) ); gxgy[drow++] = ( ((trow1[x+5] + c)*3 + d*10) ); } for(; x < w; ++x) { gxgy[drow++] = ( (trow0[x+2] - trow0[x]) ); gxgy[drow++] = ( ((trow1[x+2] + trow1[x])*3 + trow1[x+1]*10) ); } } jsfeat.cache.put_buffer(buf0_node); jsfeat.cache.put_buffer(buf1_node); }, // compute gradient using Sobel kernel [1 2 1] * [-1 0 1]^T // dst: [gx,gy,...] sobel_derivatives: function(src, dst) { var w = src.cols, h = src.rows; var dstep = w<<1,x=0,y=0,x1=0,a,b,c,d,e,f; var srow0=0,srow1=0,srow2=0,drow=0; var trow0,trow1; dst.resize(w, h, 2); // 2 channel output gx, gy var img = src.data, gxgy=dst.data; var buf0_node = jsfeat.cache.get_buffer((w+2)<<2); var buf1_node = jsfeat.cache.get_buffer((w+2)<<2); if(src.type&jsfeat.U8_t || src.type&jsfeat.S32_t) { trow0 = buf0_node.i32; trow1 = buf1_node.i32; } else { trow0 = buf0_node.f32; trow1 = buf1_node.f32; } for(; y < h; ++y, srow1+=w) { srow0 = ((y > 0 ? y-1 : 1)*w)|0; srow2 = ((y < h-1 ? y+1 : h-2)*w)|0; drow = (y*dstep)|0; // do vertical convolution for(x = 0, x1 = 1; x <= w-2; x+=2, x1+=2) { a = img[srow0+x], b = img[srow2+x]; trow0[x1] = ( (a + b) + (img[srow1+x]*2) ); trow1[x1] = ( b - a ); // a = img[srow0+x+1], b = img[srow2+x+1]; trow0[x1+1] = ( (a + b) + (img[srow1+x+1]*2) ); trow1[x1+1] = ( b - a ); } for(; x < w; ++x, ++x1) { a = img[srow0+x], b = img[srow2+x]; trow0[x1] = ( (a + b) + (img[srow1+x]*2) ); trow1[x1] = ( b - a ); } // make border x = (w + 1)|0; trow0[0] = trow0[1]; trow0[x] = trow0[w]; trow1[0] = trow1[1]; trow1[x] = trow1[w]; // do horizontal convolution, interleave the results and store them for(x = 0; x <= w-4; x+=4) { a = trow1[x+2], b = trow1[x+1], c = trow1[x+3], d = trow1[x+4], e = trow0[x+2], f = trow0[x+3]; gxgy[drow++] = ( e - trow0[x] ); gxgy[drow++] = ( a + trow1[x] + b*2 ); gxgy[drow++] = ( f - trow0[x+1] ); gxgy[drow++] = ( c + b + a*2 ); gxgy[drow++] = ( trow0[x+4] - e ); gxgy[drow++] = ( d + a + c*2 ); gxgy[drow++] = ( trow0[x+5] - f ); gxgy[drow++] = ( trow1[x+5] + c + d*2 ); } for(; x < w; ++x) { gxgy[drow++] = ( trow0[x+2] - trow0[x] ); gxgy[drow++] = ( trow1[x+2] + trow1[x] + trow1[x+1]*2 ); } } jsfeat.cache.put_buffer(buf0_node); jsfeat.cache.put_buffer(buf1_node); }, // please note: // dst_(type) size should be cols = src.cols+1, rows = src.rows+1 compute_integral_image: function(src, dst_sum, dst_sqsum, dst_tilted) { var w0=src.cols|0,h0=src.rows|0,src_d=src.data; var w1=(w0+1)|0; var s=0,s2=0,p=0,pup=0,i=0,j=0,v=0,k=0; if(dst_sum && dst_sqsum) { // fill first row with zeros for(; i < w1; ++i) { dst_sum[i] = 0, dst_sqsum[i] = 0; } p = (w1+1)|0, pup = 1; for(i = 0, k = 0; i < h0; ++i, ++p, ++pup) { s = s2 = 0; for(j = 0; j <= w0-2; j+=2, k+=2, p+=2, pup+=2) { v = src_d[k]; s += v, s2 += v*v; dst_sum[p] = dst_sum[pup] + s; dst_sqsum[p] = dst_sqsum[pup] + s2; v = src_d[k+1]; s += v, s2 += v*v; dst_sum[p+1] = dst_sum[pup+1] + s; dst_sqsum[p+1] = dst_sqsum[pup+1] + s2; } for(; j < w0; ++j, ++k, ++p, ++pup) { v = src_d[k]; s += v, s2 += v*v; dst_sum[p] = dst_sum[pup] + s; dst_sqsum[p] = dst_sqsum[pup] + s2; } } } else if(dst_sum) { // fill first row with zeros for(; i < w1; ++i) { dst_sum[i] = 0; } p = (w1+1)|0, pup = 1; for(i = 0, k = 0; i < h0; ++i, ++p, ++pup) { s = 0; for(j = 0; j <= w0-2; j+=2, k+=2, p+=2, pup+=2) { s += src_d[k]; dst_sum[p] = dst_sum[pup] + s; s += src_d[k+1]; dst_sum[p+1] = dst_sum[pup+1] + s; } for(; j < w0; ++j, ++k, ++p, ++pup) { s += src_d[k]; dst_sum[p] = dst_sum[pup] + s; } } } else if(dst_sqsum) { // fill first row with zeros for(; i < w1; ++i) { dst_sqsum[i] = 0; } p = (w1+1)|0, pup = 1; for(i = 0, k = 0; i < h0; ++i, ++p, ++pup) { s2 = 0; for(j = 0; j <= w0-2; j+=2, k+=2, p+=2, pup+=2) { v = src_d[k]; s2 += v*v; dst_sqsum[p] = dst_sqsum[pup] + s2; v = src_d[k+1]; s2 += v*v; dst_sqsum[p+1] = dst_sqsum[pup+1] + s2; } for(; j < w0; ++j, ++k, ++p, ++pup) { v = src_d[k]; s2 += v*v; dst_sqsum[p] = dst_sqsum[pup] + s2; } } } if(dst_tilted) { // fill first row with zeros for(i = 0; i < w1; ++i) { dst_tilted[i] = 0; } // diagonal p = (w1+1)|0, pup = 0; for(i = 0, k = 0; i < h0; ++i, ++p, ++pup) { for(j = 0; j <= w0-2; j+=2, k+=2, p+=2, pup+=2) { dst_tilted[p] = src_d[k] + dst_tilted[pup]; dst_tilted[p+1] = src_d[k+1] + dst_tilted[pup+1]; } for(; j < w0; ++j, ++k, ++p, ++pup) { dst_tilted[p] = src_d[k] + dst_tilted[pup]; } } // diagonal p = (w1+w0)|0, pup = w0; for(i = 0; i < h0; ++i, p+=w1, pup+=w1) { dst_tilted[p] += dst_tilted[pup]; } for(j = w0-1; j > 0; --j) { p = j+h0*w1, pup=p-w1; for(i = h0; i > 0; --i, p-=w1, pup-=w1) { dst_tilted[p] += dst_tilted[pup] + dst_tilted[pup+1]; } } } }, equalize_histogram: function(src, dst) { var w=src.cols,h=src.rows,src_d=src.data; dst.resize(w, h, src.channel); var dst_d=dst.data,size=w*h; var i=0,prev=0,hist0,norm; var hist0_node = jsfeat.cache.get_buffer(256<<2); hist0 = hist0_node.i32; for(; i < 256; ++i) hist0[i] = 0; for (i = 0; i < size; ++i) { ++hist0[src_d[i]]; } prev = hist0[0]; for (i = 1; i < 256; ++i) { prev = hist0[i] += prev; } norm = 255 / size; for (i = 0; i < size; ++i) { dst_d[i] = (hist0[src_d[i]] * norm + 0.5)|0; } jsfeat.cache.put_buffer(hist0_node); }, canny: function(src, dst, low_thresh, high_thresh) { var w=src.cols,h=src.rows,src_d=src.data; dst.resize(w, h, src.channel); var dst_d=dst.data; var i=0,j=0,grad=0,w2=w<<1,_grad=0,suppress=0,f=0,x=0,y=0,s=0; var tg22x=0,tg67x=0; // cache buffers var dxdy_node = jsfeat.cache.get_buffer((h * w2)<<2); var buf_node = jsfeat.cache.get_buffer((3 * (w + 2))<<2); var map_node = jsfeat.cache.get_buffer(((h+2) * (w + 2))<<2); var stack_node = jsfeat.cache.get_buffer((h * w)<<2); var buf = buf_node.i32; var map = map_node.i32; var stack = stack_node.i32; var dxdy = dxdy_node.i32; var dxdy_m = new jsfeat.matrix_t(w, h, jsfeat.S32C2_t, dxdy_node.data); var row0=1,row1=(w+2+1)|0,row2=(2*(w+2)+1)|0,map_w=(w+2)|0,map_i=(map_w+1)|0,stack_i=0; this.sobel_derivatives(src, dxdy_m); if(low_thresh > high_thresh) { i = low_thresh; low_thresh = high_thresh; high_thresh = i; } i = (3 * (w + 2))|0; while(--i>=0) { buf[i] = 0; } i = ((h+2) * (w + 2))|0; while(--i>=0) { map[i] = 0; } for (; j < w; ++j, grad+=2) { //buf[row1+j] = Math.abs(dxdy[grad]) + Math.abs(dxdy[grad+1]); x = dxdy[grad], y = dxdy[grad+1]; //buf[row1+j] = x*x + y*y; buf[row1+j] = ((x ^ (x >> 31)) - (x >> 31)) + ((y ^ (y >> 31)) - (y >> 31)); } for(i=1; i <= h; ++i, grad+=w2) { if(i == h) { j = row2+w; while(--j>=row2) { buf[j] = 0; } } else { for (j = 0; j < w; j++) { //buf[row2+j] = Math.abs(dxdy[grad+(j<<1)]) + Math.abs(dxdy[grad+(j<<1)+1]); x = dxdy[grad+(j<<1)], y = dxdy[grad+(j<<1)+1]; //buf[row2+j] = x*x + y*y; buf[row2+j] = ((x ^ (x >> 31)) - (x >> 31)) + ((y ^ (y >> 31)) - (y >> 31)); } } _grad = (grad - w2)|0; map[map_i-1] = 0; suppress = 0; for(j = 0; j < w; ++j, _grad+=2) { f = buf[row1+j]; if (f > low_thresh) { x = dxdy[_grad]; y = dxdy[_grad+1]; s = x ^ y; // seems ot be faster than Math.abs x = ((x ^ (x >> 31)) - (x >> 31))|0; y = ((y ^ (y >> 31)) - (y >> 31))|0; //x * tan(22.5) x * tan(67.5) == 2 * x + x * tan(22.5) tg22x = x * 13573; tg67x = tg22x + ((x + x) << 15); y <<= 15; if (y < tg22x) { if (f > buf[row1+j-1] && f >= buf[row1+j+1]) { if (f > high_thresh && !suppress && map[map_i+j-map_w] != 2) { map[map_i+j] = 2; suppress = 1; stack[stack_i++] = map_i + j; } else { map[map_i+j] = 1; } continue; } } else if (y > tg67x) { if (f > buf[row0+j] && f >= buf[row2+j]) { if (f > high_thresh && !suppress && map[map_i+j-map_w] != 2) { map[map_i+j] = 2; suppress = 1; stack[stack_i++] = map_i + j; } else { map[map_i+j] = 1; } continue; } } else { s = s < 0 ? -1 : 1; if (f > buf[row0+j-s] && f > buf[row2+j+s]) { if (f > high_thresh && !suppress && map[map_i+j-map_w] != 2) { map[map_i+j] = 2; suppress = 1; stack[stack_i++] = map_i + j; } else { map[map_i+j] = 1; } continue; } } } map[map_i+j] = 0; suppress = 0; } map[map_i+w] = 0; map_i += map_w; j = row0; row0 = row1; row1 = row2; row2 = j; } j = map_i - map_w - 1; for(i = 0; i < map_w; ++i, ++j) { map[j] = 0; } // path following while(stack_i > 0) { map_i = stack[--stack_i]; map_i -= map_w+1; if(map[map_i] == 1) map[map_i] = 2, stack[stack_i++] = map_i; map_i += 1; if(map[map_i] == 1) map[map_i] = 2, stack[stack_i++] = map_i; map_i += 1; if(map[map_i] == 1) map[map_i] = 2, stack[stack_i++] = map_i; map_i += map_w; if(map[map_i] == 1) map[map_i] = 2, stack[stack_i++] = map_i; map_i -= 2; if(map[map_i] == 1) map[map_i] = 2, stack[stack_i++] = map_i; map_i += map_w; if(map[map_i] == 1) map[map_i] = 2, stack[stack_i++] = map_i; map_i += 1; if(map[map_i] == 1) map[map_i] = 2, stack[stack_i++] = map_i; map_i += 1; if(map[map_i] == 1) map[map_i] = 2, stack[stack_i++] = map_i; } map_i = map_w + 1; row0 = 0; for(i = 0; i < h; ++i, map_i+=map_w) { for(j = 0; j < w; ++j) { dst_d[row0++] = (map[map_i+j] == 2) * 0xff; } } // free buffers jsfeat.cache.put_buffer(dxdy_node); jsfeat.cache.put_buffer(buf_node); jsfeat.cache.put_buffer(map_node); jsfeat.cache.put_buffer(stack_node); }, // transform is 3x3 matrix_t warp_perspective: function(src, dst, transform, fill_value) { if (typeof fill_value === "undefined") { fill_value = 0; } var src_width=src.cols|0, src_height=src.rows|0, dst_width=dst.cols|0, dst_height=dst.rows|0; var src_d=src.data, dst_d=dst.data; var x=0,y=0,off=0,ixs=0,iys=0,xs=0.0,ys=0.0,xs0=0.0,ys0=0.0,ws=0.0,sc=0.0,a=0.0,b=0.0,p0=0.0,p1=0.0; var td=transform.data; var m00=td[0],m01=td[1],m02=td[2], m10=td[3],m11=td[4],m12=td[5], m20=td[6],m21=td[7],m22=td[8]; for(var dptr = 0; y < dst_height; ++y) { xs0 = m01 * y + m02, ys0 = m11 * y + m12, ws = m21 * y + m22; for(x = 0; x < dst_width; ++x, ++dptr, xs0+=m00, ys0+=m10, ws+=m20) { sc = 1.0 / ws; xs = xs0 * sc, ys = ys0 * sc; ixs = xs | 0, iys = ys | 0; if(xs > 0 && ys > 0 && ixs < (src_width - 1) && iys < (src_height - 1)) { a = Math.max(xs - ixs, 0.0); b = Math.max(ys - iys, 0.0); off = (src_width*iys + ixs)|0; p0 = src_d[off] + a * (src_d[off+1] - src_d[off]); p1 = src_d[off+src_width] + a * (src_d[off+src_width+1] - src_d[off+src_width]); dst_d[dptr] = p0 + b * (p1 - p0); } else dst_d[dptr] = fill_value; } } }, // transform is 3x3 or 2x3 matrix_t only first 6 values referenced warp_affine: function(src, dst, transform, fill_value) { if (typeof fill_value === "undefined") { fill_value = 0; } var src_width=src.cols, src_height=src.rows, dst_width=dst.cols, dst_height=dst.rows; var src_d=src.data, dst_d=dst.data; var x=0,y=0,off=0,ixs=0,iys=0,xs=0.0,ys=0.0,a=0.0,b=0.0,p0=0.0,p1=0.0; var td=transform.data; var m00=td[0],m01=td[1],m02=td[2], m10=td[3],m11=td[4],m12=td[5]; for(var dptr = 0; y < dst_height; ++y) { xs = m01 * y + m02; ys = m11 * y + m12; for(x = 0; x < dst_width; ++x, ++dptr, xs+=m00, ys+=m10) { ixs = xs | 0; iys = ys | 0; if(ixs >= 0 && iys >= 0 && ixs < (src_width - 1) && iys < (src_height - 1)) { a = xs - ixs; b = ys - iys; off = src_width*iys + ixs; p0 = src_d[off] + a * (src_d[off+1] - src_d[off]); p1 = src_d[off+src_width] + a * (src_d[off+src_width+1] - src_d[off+src_width]); dst_d[dptr] = p0 + b * (p1 - p0); } else dst_d[dptr] = fill_value; } } }, // Basic RGB Skin detection filter // from http://popscan.blogspot.fr/2012/08/skin-detection-in-digital-images.html skindetector: function(src,dst) { var r,g,b,j; var i = src.width*src.height; while(i--){ j = i*4; r = src.data[j]; g = src.data[j+1]; b = src.data[j+2]; if((r>95)&&(g>40)&&(b>20) &&(r>g)&&(r>b) &&(r-Math.min(g,b)>15) &&(Math.abs(r-g)>15)){ dst[i] = 255; } else { dst[i] = 0; } } } }; })(); global.imgproc = imgproc; })(jsfeat); /** * @author Eugene Zatepyakin / http://inspirit.ru/ * * This is FAST corner detector, contributed to OpenCV by the author, Edward Rosten. */ /* The references are: * Machine learning for high-speed corner detection, E. Rosten and T. Drummond, ECCV 2006 * Faster and better: A machine learning approach to corner detection E. Rosten, R. Porter and T. Drummond, PAMI, 2009 */ (function(global) { "use strict"; // var fast_corners = (function() { var offsets16 = new Int32Array([0, 3, 1, 3, 2, 2, 3, 1, 3, 0, 3, -1, 2, -2, 1, -3, 0, -3, -1, -3, -2, -2, -3, -1, -3, 0, -3, 1, -2, 2, -1, 3]); var threshold_tab = new Uint8Array(512); var pixel_off = new Int32Array(25); var score_diff = new Int32Array(25); // private functions var _cmp_offsets = function(pixel, step, pattern_size) { var k = 0; var offsets = offsets16; for( ; k < pattern_size; ++k ) { pixel[k] = offsets[k<<1] + offsets[(k<<1)+1] * step; } for( ; k < 25; ++k ) { pixel[k] = pixel[k - pattern_size]; } }, _cmp_score_16 = function(src, off, pixel, d, threshold) { var N = 25, k = 0, v = src[off]; var a0 = threshold,a=0,b0=0,b=0; for( ; k < N; ++k ) { d[k] = v - src[off+pixel[k]]; } for( k = 0; k < 16; k += 2 ) { a = Math.min(d[k+1], d[k+2]); a = Math.min(a, d[k+3]); if( a <= a0 ) continue; a = Math.min(a, d[k+4]); a = Math.min(a, d[k+5]); a = Math.min(a, d[k+6]); a = Math.min(a, d[k+7]); a = Math.min(a, d[k+8]); a0 = Math.max(a0, Math.min(a, d[k])); a0 = Math.max(a0, Math.min(a, d[k+9])); } b0 = -a0; for( k = 0; k < 16; k += 2 ) { b = Math.max(d[k+1], d[k+2]); b = Math.max(b, d[k+3]); b = Math.max(b, d[k+4]); b = Math.max(b, d[k+5]); if( b >= b0 ) continue; b = Math.max(b, d[k+6]); b = Math.max(b, d[k+7]); b = Math.max(b, d[k+8]); b0 = Math.min(b0, Math.max(b, d[k])); b0 = Math.min(b0, Math.max(b, d[k+9])); } return -b0-1; }; var _threshold = 20; return { set_threshold: function(threshold) { _threshold = Math.min(Math.max(threshold, 0), 255); for (var i = -255; i <= 255; ++i) { threshold_tab[(i + 255)] = (i < -_threshold ? 1 : (i > _threshold ? 2 : 0)); } return _threshold; }, detect: function(src, corners, border) { if (typeof border === "undefined") { border = 3; } var K = 8, N = 25; var img = src.data, w = src.cols, h = src.rows; var i=0, j=0, k=0, vt=0, x=0, m3=0; var buf_node = jsfeat.cache.get_buffer(3 * w); var cpbuf_node = jsfeat.cache.get_buffer(((w+1)*3)<<2); var buf = buf_node.u8; var cpbuf = cpbuf_node.i32; var pixel = pixel_off; var sd = score_diff; var sy = Math.max(3, border); var ey = Math.min((h-2), (h-border)); var sx = Math.max(3, border); var ex = Math.min((w - 3), (w - border)); var _count = 0, corners_cnt = 0, pt; var score_func = _cmp_score_16; var thresh_tab = threshold_tab; var threshold = _threshold; var v=0,tab=0,d=0,ncorners=0,cornerpos=0,curr=0,ptr=0,prev=0,pprev=0; var jp1=0,jm1=0,score=0; _cmp_offsets(pixel, w, 16); // local vars are faster? var pixel0 = pixel[0]; var pixel1 = pixel[1]; var pixel2 = pixel[2]; var pixel3 = pixel[3]; var pixel4 = pixel[4]; var pixel5 = pixel[5]; var pixel6 = pixel[6]; var pixel7 = pixel[7]; var pixel8 = pixel[8]; var pixel9 = pixel[9]; var pixel10 = pixel[10]; var pixel11 = pixel[11]; var pixel12 = pixel[12]; var pixel13 = pixel[13]; var pixel14 = pixel[14]; var pixel15 = pixel[15]; for(i = 0; i < w*3; ++i) { buf[i] = 0; } for(i = sy; i < ey; ++i) { ptr = ((i * w) + sx)|0; m3 = (i - 3)%3; curr = (m3*w)|0; cornerpos = (m3*(w+1))|0; for (j = 0; j < w; ++j) buf[curr+j] = 0; ncorners = 0; if( i < (ey - 1) ) { j = sx; for( ; j < ex; ++j, ++ptr ) { v = img[ptr]; tab = ( - v + 255 ); d = ( thresh_tab[tab+img[ptr+pixel0]] | thresh_tab[tab+img[ptr+pixel8]] ); if( d == 0 ) { continue; } d &= ( thresh_tab[tab+img[ptr+pixel2]] | thresh_tab[tab+img[ptr+pixel10]] ); d &= ( thresh_tab[tab+img[ptr+pixel4]] | thresh_tab[tab+img[ptr+pixel12]] ); d &= ( thresh_tab[tab+img[ptr+pixel6]] | thresh_tab[tab+img[ptr+pixel14]] ); if( d == 0 ) { continue; } d &= ( thresh_tab[tab+img[ptr+pixel1]] | thresh_tab[tab+img[ptr+pixel9]] ); d &= ( thresh_tab[tab+img[ptr+pixel3]] | thresh_tab[tab+img[ptr+pixel11]] ); d &= ( thresh_tab[tab+img[ptr+pixel5]] | thresh_tab[tab+img[ptr+pixel13]] ); d &= ( thresh_tab[tab+img[ptr+pixel7]] | thresh_tab[tab+img[ptr+pixel15]] ); if( d & 1 ) { vt = (v - threshold); _count = 0; for( k = 0; k < N; ++k ) { x = img[(ptr+pixel[k])]; if(x < vt) { ++_count; if( _count > K ) { ++ncorners; cpbuf[cornerpos+ncorners] = j; buf[curr+j] = score_func(img, ptr, pixel, sd, threshold); break; } } else { _count = 0; } } } if( d & 2 ) { vt = (v + threshold); _count = 0; for( k = 0; k < N; ++k ) { x = img[(ptr+pixel[k])]; if(x > vt) { ++_count; if( _count > K ) { ++ncorners; cpbuf[cornerpos+ncorners] = j; buf[curr+j] = score_func(img, ptr, pixel, sd, threshold); break; } } else { _count = 0; } } } } } cpbuf[cornerpos+w] = ncorners; if ( i == sy ) { continue; } m3 = (i - 4 + 3)%3; prev = (m3*w)|0; cornerpos = (m3*(w+1))|0; m3 = (i - 5 + 3)%3; pprev = (m3*w)|0; ncorners = cpbuf[cornerpos+w]; for( k = 0; k < ncorners; ++k ) { j = cpbuf[cornerpos+k]; jp1 = (j+1)|0; jm1 = (j-1)|0; score = buf[prev+j]; if( (score > buf[prev+jp1] && score > buf[prev+jm1] && score > buf[pprev+jm1] && score > buf[pprev+j] && score > buf[pprev+jp1] && score > buf[curr+jm1] && score > buf[curr+j] && score > buf[curr+jp1]) ) { // save corner pt = corners[corners_cnt]; pt.x = j, pt.y = (i-1), pt.score = score; corners_cnt++; } } } // y loop jsfeat.cache.put_buffer(buf_node); jsfeat.cache.put_buffer(cpbuf_node); return corners_cnt; } }; })(); global.fast_corners = fast_corners; fast_corners.set_threshold(20); // set default })(jsfeat); /** * @author Eugene Zatepyakin / http://inspirit.ru/ * * Copyright 2007 Computer Vision Lab, * Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland. * @author Vincent Lepetit (http://cvlab.epfl.ch/~lepetit) */ (function(global) { "use strict"; // var yape06 = (function() { var compute_laplacian = function(src, dst, w, h, Dxx, Dyy, sx,sy, ex,ey) { var y=0,x=0,yrow=(sy*w+sx)|0,row=yrow; for(y = sy; y < ey; ++y, yrow+=w, row = yrow) { for(x = sx; x < ex; ++x, ++row) { dst[row] = -4 * src[row] + src[row+Dxx] + src[row-Dxx] + src[row+Dyy] + src[row-Dyy]; } } } var hessian_min_eigen_value = function(src, off, tr, Dxx, Dyy, Dxy, Dyx) { var Ixx = -2 * src[off] + src[off + Dxx] + src[off - Dxx]; var Iyy = -2 * src[off] + src[off + Dyy] + src[off - Dyy]; var Ixy = src[off + Dxy] + src[off - Dxy] - src[off + Dyx] - src[off - Dyx]; var sqrt_delta = ( Math.sqrt(((Ixx - Iyy) * (Ixx - Iyy) + 4 * Ixy * Ixy) ) )|0; return Math.min(Math.abs(tr - sqrt_delta), Math.abs(-(tr + sqrt_delta))); } return { laplacian_threshold: 30, min_eigen_value_threshold: 25, detect: function(src, points, border) { if (typeof border === "undefined") { border = 5; } var x=0,y=0; var w=src.cols, h=src.rows, srd_d=src.data; var Dxx = 5, Dyy = (5 * w)|0; var Dxy = (3 + 3 * w)|0, Dyx = (3 - 3 * w)|0; var lap_buf = jsfeat.cache.get_buffer((w*h)<<2); var laplacian = lap_buf.i32; var lv=0, row=0,rowx=0,min_eigen_value=0,pt; var number_of_points = 0; var lap_thresh = this.laplacian_threshold; var eigen_thresh = this.min_eigen_value_threshold; var sx = Math.max(5, border)|0; var sy = Math.max(3, border)|0; var ex = Math.min(w-5, w-border)|0; var ey = Math.min(h-3, h-border)|0; x = w*h; while(--x>=0) {laplacian[x]=0;} compute_laplacian(srd_d, laplacian, w, h, Dxx, Dyy, sx,sy, ex,ey); row = (sy*w+sx)|0; for(y = sy; y < ey; ++y, row += w) { for(x = sx, rowx=row; x < ex; ++x, ++rowx) { lv = laplacian[rowx]; if ((lv < -lap_thresh && lv < laplacian[rowx - 1] && lv < laplacian[rowx + 1] && lv < laplacian[rowx - w] && lv < laplacian[rowx + w] && lv < laplacian[rowx - w - 1] && lv < laplacian[rowx + w - 1] && lv < laplacian[rowx - w + 1] && lv < laplacian[rowx + w + 1]) || (lv > lap_thresh && lv > laplacian[rowx - 1] && lv > laplacian[rowx + 1] && lv > laplacian[rowx - w] && lv > laplacian[rowx + w] && lv > laplacian[rowx - w - 1] && lv > laplacian[rowx + w - 1] && lv > laplacian[rowx - w + 1] && lv > laplacian[rowx + w + 1]) ) { min_eigen_value = hessian_min_eigen_value(srd_d, rowx, lv, Dxx, Dyy, Dxy, Dyx); if (min_eigen_value > eigen_thresh) { pt = points[number_of_points]; pt.x = x, pt.y = y, pt.score = min_eigen_value; ++number_of_points; ++x, ++rowx; // skip next pixel since this is maxima in 3x3 } } } } jsfeat.cache.put_buffer(lap_buf); return number_of_points; } }; })(); global.yape06 = yape06; })(jsfeat); /** * @author Eugene Zatepyakin / http://inspirit.ru/ * * Copyright 2007 Computer Vision Lab, * Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland. */ (function(global) { "use strict"; // var yape = (function() { var precompute_directions = function(step, dirs, R) { var i = 0; var x, y; x = R; for(y = 0; y < x; y++, i++) { x = (Math.sqrt((R * R - y * y)) + 0.5)|0; dirs[i] = (x + step * y); } for(x-- ; x < y && x >= 0; x--, i++) { y = (Math.sqrt((R * R - x * x)) + 0.5)|0; dirs[i] = (x + step * y); } for( ; -x < y; x--, i++) { y = (Math.sqrt((R * R - x * x)) + 0.5)|0; dirs[i] = (x + step * y); } for(y-- ; y >= 0; y--, i++) { x = (-Math.sqrt((R * R - y * y)) - 0.5)|0; dirs[i] = (x + step * y); } for(; y > x; y--, i++) { x = (-Math.sqrt((R * R - y * y)) - 0.5)|0; dirs[i] = (x + step * y); } for(x++ ; x <= 0; x++, i++) { y = (-Math.sqrt((R * R - x * x)) - 0.5)|0; dirs[i] = (x + step * y); } for( ; x < -y; x++, i++) { y = (-Math.sqrt((R * R - x * x)) - 0.5)|0; dirs[i] = (x + step * y); } for(y++ ; y < 0; y++, i++) { x = (Math.sqrt((R * R - y * y)) + 0.5)|0; dirs[i] = (x + step * y); } dirs[i] = dirs[0]; dirs[i + 1] = dirs[1]; return i; } var third_check = function (Sb, off, step) { var n = 0; if(Sb[off+1] != 0) n++; if(Sb[off-1] != 0) n++; if(Sb[off+step] != 0) n++; if(Sb[off+step+1] != 0) n++; if(Sb[off+step-1] != 0) n++; if(Sb[off-step] != 0) n++; if(Sb[off-step+1] != 0) n++; if(Sb[off-step-1] != 0) n++; return n; } var is_local_maxima = function(p, off, v, step, neighborhood) { var x, y; if (v > 0) { off -= step*neighborhood; for (y= -neighborhood; y<=neighborhood; ++y) { for (x= -neighborhood; x<=neighborhood; ++x) { if (p[off+x] > v) return false; } off += step; } } else { off -= step*neighborhood; for (y= -neighborhood; y<=neighborhood; ++y) { for (x= -neighborhood; x<=neighborhood; ++x) { if (p[off+x] < v) return false; } off += step; } } return true; } var perform_one_point = function(I, x, Scores, Im, Ip, dirs, opposite, dirs_nb) { var score = 0; var a = 0, b = (opposite - 1)|0; var A=0, B0=0, B1=0, B2=0; var state=0; // WE KNOW THAT NOT(A ~ I0 & B1 ~ I0): A = I[x+dirs[a]]; if ((A <= Ip)) { if ((A >= Im)) { // A ~ I0 B0 = I[x+dirs[b]]; if ((B0 <= Ip)) { if ((B0 >= Im)) { Scores[x] = 0; return; } else { b++; B1 = I[x+dirs[b]]; if ((B1 > Ip)) { b++; B2 = I[x+dirs[b]]; if ((B2 > Ip)) state = 3; else if ((B2 < Im)) state = 6; else { Scores[x] = 0; return; } // A ~ I0, B2 ~ I0 } else/* if ((B1 < Im))*/ { b++; B2 = I[x+dirs[b]]; if ((B2 > Ip)) state = 7; else if ((B2 < Im)) state = 2; else { Scores[x] = 0; return; } // A ~ I0, B2 ~ I0 } //else { Scores[x] = 0; return; } // A ~ I0, B1 ~ I0 } } else { // B0 < I0 b++; B1 = I[x+dirs[b]]; if ((B1 > Ip)) { b++; B2 = I[x+dirs[b]]; if ((B2 > Ip)) state = 3; else if ((B2 < Im)) state = 6; else { Scores[x] = 0; return; } // A ~ I0, B2 ~ I0 } else if ((B1 < Im)) { b++; B2 = I[x+dirs[b]]; if ((B2 > Ip)) state = 7; else if ((B2 < Im)) state = 2; else { Scores[x] = 0; return; } // A ~ I0, B2 ~ I0 } else { Scores[x] = 0; return; } // A ~ I0, B1 ~ I0 } } else { // A > I0 B0 = I[x+dirs[b]]; if ((B0 > Ip)) { Scores[x] = 0; return; } b++; B1 = I[x+dirs[b]]; if ((B1 > Ip)) { Scores[x] = 0; return; } b++; B2 = I[x+dirs[b]]; if ((B2 > Ip)) { Scores[x] = 0; return; } state = 1; } } else // A < I0 { B0 = I[x+dirs[b]]; if ((B0 < Im)) { Scores[x] = 0; return; } b++; B1 = I[x+dirs[b]]; if ((B1 < Im)) { Scores[x] = 0; return; } b++; B2 = I[x+dirs[b]]; if ((B2 < Im)) { Scores[x] = 0; return; } state = 0; } for(a = 1; a <= opposite; a++) { A = I[x+dirs[a]]; switch(state) { case 0: if ((A > Ip)) { B1 = B2; b++; B2 = I[x+dirs[b]]; if ((B2 < Im)) { Scores[x] = 0; return; } { score -= A + B1; state = 0; break; }; } if ((A < Im)) { if ((B1 > Ip)) { Scores[x] = 0; return; } if ((B2 > Ip)) { Scores[x] = 0; return; } B1 = B2; b++; B2 = I[x+dirs[b]]; if ((B2 > Ip)) { Scores[x] = 0; return; } { score -= A + B1; state = 8; break; }; } // A ~ I0 if ((B1 <= Ip)) { Scores[x] = 0; return; } if ((B2 <= Ip)) { Scores[x] = 0; return; } B1 = B2; b++; B2 = I[x+dirs[b]]; if ((B2 > Ip)) { score -= A + B1; state = 3; break; }; if ((B2 < Im)) { score -= A + B1; state = 6; break; }; { Scores[x] = 0; return; } case 1: if ((A < Im)) { B1 = B2; b++; B2 = I[x+dirs[b]]; if ((B2 > Ip)) { Scores[x] = 0; return; } { score -= A + B1; state = 1; break; }; } if ((A > Ip)) { if ((B1 < Im)) { Scores[x] = 0; return; } if ((B2 < Im)) { Scores[x] = 0; return; } B1 = B2; b++; B2 = I[x+dirs[b]]; if ((B2 < Im)) { Scores[x] = 0; return; } { score -= A + B1; state = 9; break; }; } // A ~ I0 if ((B1 >= Im)) { Scores[x] = 0; return; } if ((B2 >= Im)) { Scores[x] = 0; return; } B1 = B2; b++; B2 = I[x+dirs[b]]; if ((B2 < Im)) { score -= A + B1; state = 2; break; }; if ((B2 > Ip)) { score -= A + B1; state = 7; break; }; { Scores[x] = 0; return; } case 2: if ((A > Ip)) { Scores[x] = 0; return; } B1 = B2; b++; B2 = I[x+dirs[b]]; if ((A < Im)) { if ((B2 > Ip)) { Scores[x] = 0; return; } { score -= A + B1; state = 4; break; }; } // A ~ I0 if ((B2 > Ip)) { score -= A + B1; state = 7; break; }; if ((B2 < Im)) { score -= A + B1; state = 2; break; }; { Scores[x] = 0; return; } // A ~ I0, B2 ~ I0 case 3: if ((A < Im)) { Scores[x] = 0; return; } B1 = B2; b++; B2 = I[x+dirs[b]]; if ((A > Ip)) { if ((B2 < Im)) { Scores[x] = 0; return; } { score -= A + B1; state = 5; break; }; } // A ~ I0 if ((B2 > Ip)) { score -= A + B1; state = 3; break; }; if ((B2 < Im)) { score -= A + B1; state = 6; break; }; { Scores[x] = 0; return; } case 4: if ((A > Ip)) { Scores[x] = 0; return; } if ((A < Im)) { B1 = B2; b++; B2 = I[x+dirs[b]]; if ((B2 > Ip)) { Scores[x] = 0; return; } { score -= A + B1; state = 1; break; }; } if ((B2 >= Im)) { Scores[x] = 0; return; } B1 = B2; b++; B2 = I[x+dirs[b]]; if ((B2 < Im)) { score -= A + B1; state = 2; break; }; if ((B2 > Ip)) { score -= A + B1; state = 7; break; }; { Scores[x] = 0; return; } case 5: if ((A < Im)) { Scores[x] = 0; return; } if ((A > Ip)) { B1 = B2; b++; B2 = I[x+dirs[b]]; if ((B2 < Im)) { Scores[x] = 0; return; } { score -= A + B1; state = 0; break; }; } // A ~ I0 if ((B2 <= Ip)) { Scores[x] = 0; return; } B1 = B2; b++; B2 = I[x+dirs[b]]; if ((B2 > Ip)) { score -= A + B1; state = 3; break; }; if ((B2 < Im)) { score -= A + B1; state = 6; break; }; { Scores[x] = 0; return; } case 7: if ((A > Ip)) { Scores[x] = 0; return; } if ((A < Im)) { Scores[x] = 0; return; } B1 = B2; b++; B2 = I[x+dirs[b]]; // A ~ I0 if ((B2 > Ip)) { score -= A + B1; state = 3; break; }; if ((B2 < Im)) { score -= A + B1; state = 6; break; }; { Scores[x] = 0; return; } // A ~ I0, B2 ~ I0 case 6: if ((A > Ip)) { Scores[x] = 0; return; } if ((A < Im)) { Scores[x] = 0; return; } B1 = B2; b++; B2 = I[x+dirs[b]]; // A ~ I0 if ((B2 < Im)) { score -= A + B1; state = 2; break; }; if ((B2 > Ip)) { score -= A + B1; state = 7; break; }; { Scores[x] = 0; return; } // A ~ I0, B2 ~ I0 case 8: if ((A > Ip)) { if ((B2 < Im)) { Scores[x] = 0; return; } B1 = B2; b++; B2 = I[x+dirs[b]]; if ((B2 < Im)) { Scores[x] = 0; return; } { score -= A + B1; state = 9; break; }; } if ((A < Im)) { B1 = B2; b++; B2 = I[x+dirs[b]]; if ((B2 > Ip)) { Scores[x] = 0; return; } { score -= A + B1; state = 1; break; }; } { Scores[x] = 0; return; } case 9: if ((A < Im)) { if ((B2 > Ip)) { Scores[x] = 0; return; } B1 = B2; b++; B2 = I[x+dirs[b]]; if ((B2 > Ip)) { Scores[x] = 0; return; } { score -= A + B1; state = 8; break; }; } if ((A > Ip)) { B1 = B2; b++; B2 = I[x+dirs[b]]; if ((B2 < Im)) { Scores[x] = 0; return; } { score -= A + B1; state = 0; break; }; } { Scores[x] = 0; return; } default: //"PB default"; break; } // switch(state) } // for(a...) Scores[x] = (score + dirs_nb * I[x]); } var lev_table_t = (function () { function lev_table_t(w, h, r) { this.dirs = new Int32Array(1024); this.dirs_count = precompute_directions(w, this.dirs, r)|0; this.scores = new Int32Array(w*h); this.radius = r|0; } return lev_table_t; })(); return { level_tables: [], tau: 7, init: function(width, height, radius, pyramid_levels) { if (typeof pyramid_levels === "undefined") { pyramid_levels = 1; } var i; radius = Math.min(radius, 7); radius = Math.max(radius, 3); for(i = 0; i < pyramid_levels; ++i) { this.level_tables[i] = new lev_table_t(width>>i, height>>i, radius); } }, detect: function(src, points, border) { if (typeof border === "undefined") { border = 4; } var t = this.level_tables[0]; var R = t.radius|0, Rm1 = (R-1)|0; var dirs = t.dirs; var dirs_count = t.dirs_count|0; var opposite = dirs_count >> 1; var img = src.data, w=src.cols|0, h=src.rows|0,hw=w>>1; var scores = t.scores; var x=0,y=0,row=0,rowx=0,ip=0,im=0,abs_score=0, score=0; var tau = this.tau|0; var number_of_points = 0, pt; var sx = Math.max(R+1, border)|0; var sy = Math.max(R+1, border)|0; var ex = Math.min(w-R-2, w-border)|0; var ey = Math.min(h-R-2, h-border)|0; row = (sy*w+sx)|0; for(y = sy; y < ey; ++y, row+=w) { for(x = sx, rowx = row; x < ex; ++x, ++rowx) { ip = img[rowx] + tau, im = img[rowx] - tau; if (im<img[rowx+R] && img[rowx+R]<ip && im<img[rowx-R] && img[rowx-R]<ip) { scores[rowx] = 0; } else { perform_one_point(img, rowx, scores, im, ip, dirs, opposite, dirs_count); } } } // local maxima row = (sy*w+sx)|0; for(y = sy; y < ey; ++y, row+=w) { for(x = sx, rowx = row; x < ex; ++x, ++rowx) { score = scores[rowx]; abs_score = Math.abs(score); if(abs_score < 5) { // if this pixel is 0, the next one will not be good enough. Skip it. ++x, ++rowx; } else { if(third_check(scores, rowx, w) >= 3 && is_local_maxima(scores, rowx, score, hw, R)) { pt = points[number_of_points]; pt.x = x, pt.y = y, pt.score = abs_score; ++number_of_points; x += Rm1, rowx += Rm1; } } } } return number_of_points; } }; })(); global.yape = yape; })(jsfeat); /** * @author Eugene Zatepyakin / http://inspirit.ru/ * * Original implementation derived from OpenCV, * @authors Ethan Rublee, Vincent Rabaud, Gary Bradski */ (function(global) { "use strict"; // var orb = (function() { var bit_pattern_31_ = new Int32Array([ 8,-3, 9,5/*mean (0), correlation (0)*/, 4,2, 7,-12/*mean (1.12461e-05), correlation (0.0437584)*/, -11,9, -8,2/*mean (3.37382e-05), correlation (0.0617409)*/, 7,-12, 12,-13/*mean (5.62303e-05), correlation (0.0636977)*/, 2,-13, 2,12/*mean (0.000134953), correlation (0.085099)*/, 1,-7, 1,6/*mean (0.000528565), correlation (0.0857175)*/, -2,-10, -2,-4/*mean (0.0188821), correlation (0.0985774)*/, -13,-13, -11,-8/*mean (0.0363135), correlation (0.0899616)*/, -13,-3, -12,-9/*mean (0.121806), correlation (0.099849)*/, 10,4, 11,9/*mean (0.122065), correlation (0.093285)*/, -13,-8, -8,-9/*mean (0.162787), correlation (0.0942748)*/, -11,7, -9,12/*mean (0.21561), correlation (0.0974438)*/, 7,7, 12,6/*mean (0.160583), correlation (0.130064)*/, -4,-5, -3,0/*mean (0.228171), correlation (0.132998)*/, -13,2, -12,-3/*mean (0.00997526), correlation (0.145926)*/, -9,0, -7,5/*mean (0.198234), correlation (0.143636)*/, 12,-6, 12,-1/*mean (0.0676226), correlation (0.16689)*/, -3,6, -2,12/*mean (0.166847), correlation (0.171682)*/, -6,-13, -4,-8/*mean (0.101215), correlation (0.179716)*/, 11,-13, 12,-8/*mean (0.200641), correlation (0.192279)*/, 4,7, 5,1/*mean (0.205106), correlation (0.186848)*/, 5,-3, 10,-3/*mean (0.234908), correlation (0.192319)*/, 3,-7, 6,12/*mean (0.0709964), correlation (0.210872)*/, -8,-7, -6,-2/*mean (0.0939834), correlation (0.212589)*/, -2,11, -1,-10/*mean (0.127778), correlation (0.20866)*/, -13,12, -8,10/*mean (0.14783), correlation (0.206356)*/, -7,3, -5,-3/*mean (0.182141), correlation (0.198942)*/, -4,2, -3,7/*mean (0.188237), correlation (0.21384)*/, -10,-12, -6,11/*mean (0.14865), correlation (0.23571)*/, 5,-12, 6,-7/*mean (0.222312), correlation (0.23324)*/, 5,-6, 7,-1/*mean (0.229082), correlation (0.23389)*/, 1,0, 4,-5/*mean (0.241577), correlation (0.215286)*/, 9,11, 11,-13/*mean (0.00338507), correlation (0.251373)*/, 4,7, 4,12/*mean (0.131005), correlation (0.257622)*/, 2,-1, 4,4/*mean (0.152755), correlation (0.255205)*/, -4,-12, -2,7/*mean (0.182771), correlation (0.244867)*/, -8,-5, -7,-10/*mean (0.186898), correlation (0.23901)*/, 4,11, 9,12/*mean (0.226226), correlation (0.258255)*/, 0,-8, 1,-13/*mean (0.0897886), correlation (0.274827)*/, -13,-2, -8,2/*mean (0.148774), correlation (0.28065)*/, -3,-2, -2,3/*mean (0.153048), correlation (0.283063)*/, -6,9, -4,-9/*mean (0.169523), correlation (0.278248)*/, 8,12, 10,7/*mean (0.225337), correlation (0.282851)*/, 0,9, 1,3/*mean (0.226687), correlation (0.278734)*/, 7,-5, 11,-10/*mean (0.00693882), correlation (0.305161)*/, -13,-6, -11,0/*mean (0.0227283), correlation (0.300181)*/, 10,7, 12,1/*mean (0.125517), correlation (0.31089)*/, -6,-3, -6,12/*mean (0.131748), correlation (0.312779)*/, 10,-9, 12,-4/*mean (0.144827), correlation (0.292797)*/, -13,8, -8,-12/*mean (0.149202), correlation (0.308918)*/, -13,0, -8,-4/*mean (0.160909), correlation (0.310013)*/, 3,3, 7,8/*mean (0.177755), correlation (0.309394)*/, 5,7, 10,-7/*mean (0.212337), correlation (0.310315)*/, -1,7, 1,-12/*mean (0.214429), correlation (0.311933)*/, 3,-10, 5,6/*mean (0.235807), correlation (0.313104)*/, 2,-4, 3,-10/*mean (0.00494827), correlation (0.344948)*/, -13,0, -13,5/*mean (0.0549145), correlation (0.344675)*/, -13,-7, -12,12/*mean (0.103385), correlation (0.342715)*/, -13,3, -11,8/*mean (0.134222), correlation (0.322922)*/, -7,12, -4,7/*mean (0.153284), correlation (0.337061)*/, 6,-10, 12,8/*mean (0.154881), correlation (0.329257)*/, -9,-1, -7,-6/*mean (0.200967), correlation (0.33312)*/, -2,-5, 0,12/*mean (0.201518), correlation (0.340635)*/, -12,5, -7,5/*mean (0.207805), correlation (0.335631)*/, 3,-10, 8,-13/*mean (0.224438), correlation (0.34504)*/, -7,-7, -4,5/*mean (0.239361), correlation (0.338053)*/, -3,-2, -1,-7/*mean (0.240744), correlation (0.344322)*/, 2,9, 5,-11/*mean (0.242949), correlation (0.34145)*/, -11,-13, -5,-13/*mean (0.244028), correlation (0.336861)*/, -1,6, 0,-1/*mean (0.247571), correlation (0.343684)*/, 5,-3, 5,2/*mean (0.000697256), correlation (0.357265)*/, -4,-13, -4,12/*mean (0.00213675), correlation (0.373827)*/, -9,-6, -9,6/*mean (0.0126856), correlation (0.373938)*/, -12,-10, -8,-4/*mean (0.0152497), correlation (0.364237)*/, 10,2, 12,-3/*mean (0.0299933), correlation (0.345292)*/, 7,12, 12,12/*mean (0.0307242), correlation (0.366299)*/, -7,-13, -6,5/*mean (0.0534975), correlation (0.368357)*/, -4,9, -3,4/*mean (0.099865), correlation (0.372276)*/, 7,-1, 12,2/*mean (0.117083), correlation (0.364529)*/, -7,6, -5,1/*mean (0.126125), correlation (0.369606)*/, -13,11, -12,5/*mean (0.130364), correlation (0.358502)*/, -3,7, -2,-6/*mean (0.131691), correlation (0.375531)*/, 7,-8, 12,-7/*mean (0.160166), correlation (0.379508)*/, -13,-7, -11,-12/*mean (0.167848), correlation (0.353343)*/, 1,-3, 12,12/*mean (0.183378), correlation (0.371916)*/, 2,-6, 3,0/*mean (0.228711), correlation (0.371761)*/, -4,3, -2,-13/*mean (0.247211), correlation (0.364063)*/, -1,-13, 1,9/*mean (0.249325), correlation (0.378139)*/, 7,1, 8,-6/*mean (0.000652272), correlation (0.411682)*/, 1,-1, 3,12/*mean (0.00248538), correlation (0.392988)*/, 9,1, 12,6/*mean (0.0206815), correlation (0.386106)*/, -1,-9, -1,3/*mean (0.0364485), correlation (0.410752)*/, -13,-13, -10,5/*mean (0.0376068), correlation (0.398374)*/, 7,7, 10,12/*mean (0.0424202), correlation (0.405663)*/, 12,-5, 12,9/*mean (0.0942645), correlation (0.410422)*/, 6,3, 7,11/*mean (0.1074), correlation (0.413224)*/, 5,-13, 6,10/*mean (0.109256), correlation (0.408646)*/, 2,-12, 2,3/*mean (0.131691), correlation (0.416076)*/, 3,8, 4,-6/*mean (0.165081), correlation (0.417569)*/, 2,6, 12,-13/*mean (0.171874), correlation (0.408471)*/, 9,-12, 10,3/*mean (0.175146), correlation (0.41296)*/, -8,4, -7,9/*mean (0.183682), correlation (0.402956)*/, -11,12, -4,-6/*mean (0.184672), correlation (0.416125)*/, 1,12, 2,-8/*mean (0.191487), correlation (0.386696)*/, 6,-9, 7,-4/*mean (0.192668), correlation (0.394771)*/, 2,3, 3,-2/*mean (0.200157), correlation (0.408303)*/, 6,3, 11,0/*mean (0.204588), correlation (0.411762)*/, 3,-3, 8,-8/*mean (0.205904), correlation (0.416294)*/, 7,8, 9,3/*mean (0.213237), correlation (0.409306)*/, -11,-5, -6,-4/*mean (0.243444), correlation (0.395069)*/, -10,11, -5,10/*mean (0.247672), correlation (0.413392)*/, -5,-8, -3,12/*mean (0.24774), correlation (0.411416)*/, -10,5, -9,0/*mean (0.00213675), correlation (0.454003)*/, 8,-1, 12,-6/*mean (0.0293635), correlation (0.455368)*/, 4,-6, 6,-11/*mean (0.0404971), correlation (0.457393)*/, -10,12, -8,7/*mean (0.0481107), correlation (0.448364)*/, 4,-2, 6,7/*mean (0.050641), correlation (0.455019)*/, -2,0, -2,12/*mean (0.0525978), correlation (0.44338)*/, -5,-8, -5,2/*mean (0.0629667), correlation (0.457096)*/, 7,-6, 10,12/*mean (0.0653846), correlation (0.445623)*/, -9,-13, -8,-8/*mean (0.0858749), correlation (0.449789)*/, -5,-13, -5,-2/*mean (0.122402), correlation (0.450201)*/, 8,-8, 9,-13/*mean (0.125416), correlation (0.453224)*/, -9,-11, -9,0/*mean (0.130128), correlation (0.458724)*/, 1,-8, 1,-2/*mean (0.132467), correlation (0.440133)*/, 7,-4, 9,1/*mean (0.132692), correlation (0.454)*/, -2,1, -1,-4/*mean (0.135695), correlation (0.455739)*/, 11,-6, 12,-11/*mean (0.142904), correlation (0.446114)*/, -12,-9, -6,4/*mean (0.146165), correlation (0.451473)*/, 3,7, 7,12/*mean (0.147627), correlation (0.456643)*/, 5,5, 10,8/*mean (0.152901), correlation (0.455036)*/, 0,-4, 2,8/*mean (0.167083), correlation (0.459315)*/, -9,12, -5,-13/*mean (0.173234), correlation (0.454706)*/, 0,7, 2,12/*mean (0.18312), correlation (0.433855)*/, -1,2, 1,7/*mean (0.185504), correlation (0.443838)*/, 5,11, 7,-9/*mean (0.185706), correlation (0.451123)*/, 3,5, 6,-8/*mean (0.188968), correlation (0.455808)*/, -13,-4, -8,9/*mean (0.191667), correlation (0.459128)*/, -5,9, -3,-3/*mean (0.193196), correlation (0.458364)*/, -4,-7, -3,-12/*mean (0.196536), correlation (0.455782)*/, 6,5, 8,0/*mean (0.1972), correlation (0.450481)*/, -7,6, -6,12/*mean (0.199438), correlation (0.458156)*/, -13,6, -5,-2/*mean (0.211224), correlation (0.449548)*/, 1,-10, 3,10/*mean (0.211718), correlation (0.440606)*/, 4,1, 8,-4/*mean (0.213034), correlation (0.443177)*/, -2,-2, 2,-13/*mean (0.234334), correlation (0.455304)*/, 2,-12, 12,12/*mean (0.235684), correlation (0.443436)*/, -2,-13, 0,-6/*mean (0.237674), correlation (0.452525)*/, 4,1, 9,3/*mean (0.23962), correlation (0.444824)*/, -6,-10, -3,-5/*mean (0.248459), correlation (0.439621)*/, -3,-13, -1,1/*mean (0.249505), correlation (0.456666)*/, 7,5, 12,-11/*mean (0.00119208), correlation (0.495466)*/, 4,-2, 5,-7/*mean (0.00372245), correlation (0.484214)*/, -13,9, -9,-5/*mean (0.00741116), correlation (0.499854)*/, 7,1, 8,6/*mean (0.0208952), correlation (0.499773)*/, 7,-8, 7,6/*mean (0.0220085), correlation (0.501609)*/, -7,-4, -7,1/*mean (0.0233806), correlation (0.496568)*/, -8,11, -7,-8/*mean (0.0236505), correlation (0.489719)*/, -13,6, -12,-8/*mean (0.0268781), correlation (0.503487)*/, 2,4, 3,9/*mean (0.0323324), correlation (0.501938)*/, 10,-5, 12,3/*mean (0.0399235), correlation (0.494029)*/, -6,-5, -6,7/*mean (0.0420153), correlation (0.486579)*/, 8,-3, 9,-8/*mean (0.0548021), correlation (0.484237)*/, 2,-12, 2,8/*mean (0.0616622), correlation (0.496642)*/, -11,-2, -10,3/*mean (0.0627755), correlation (0.498563)*/, -12,-13, -7,-9/*mean (0.0829622), correlation (0.495491)*/, -11,0, -10,-5/*mean (0.0843342), correlation (0.487146)*/, 5,-3, 11,8/*mean (0.0929937), correlation (0.502315)*/, -2,-13, -1,12/*mean (0.113327), correlation (0.48941)*/, -1,-8, 0,9/*mean (0.132119), correlation (0.467268)*/, -13,-11, -12,-5/*mean (0.136269), correlation (0.498771)*/, -10,-2, -10,11/*mean (0.142173), correlation (0.498714)*/, -3,9, -2,-13/*mean (0.144141), correlation (0.491973)*/, 2,-3, 3,2/*mean (0.14892), correlation (0.500782)*/, -9,-13, -4,0/*mean (0.150371), correlation (0.498211)*/, -4,6, -3,-10/*mean (0.152159), correlation (0.495547)*/, -4,12, -2,-7/*mean (0.156152), correlation (0.496925)*/, -6,-11, -4,9/*mean (0.15749), correlation (0.499222)*/, 6,-3, 6,11/*mean (0.159211), correlation (0.503821)*/, -13,11, -5,5/*mean (0.162427), correlation (0.501907)*/, 11,11, 12,6/*mean (0.16652), correlation (0.497632)*/, 7,-5, 12,-2/*mean (0.169141), correlation (0.484474)*/, -1,12, 0,7/*mean (0.169456), correlation (0.495339)*/, -4,-8, -3,-2/*mean (0.171457), correlation (0.487251)*/, -7,1, -6,7/*mean (0.175), correlation (0.500024)*/, -13,-12, -8,-13/*mean (0.175866), correlation (0.497523)*/, -7,-2, -6,-8/*mean (0.178273), correlation (0.501854)*/, -8,5, -6,-9/*mean (0.181107), correlation (0.494888)*/, -5,-1, -4,5/*mean (0.190227), correlation (0.482557)*/, -13,7, -8,10/*mean (0.196739), correlation (0.496503)*/, 1,5, 5,-13/*mean (0.19973), correlation (0.499759)*/, 1,0, 10,-13/*mean (0.204465), correlation (0.49873)*/, 9,12, 10,-1/*mean (0.209334), correlation (0.49063)*/, 5,-8, 10,-9/*mean (0.211134), correlation (0.503011)*/, -1,11, 1,-13/*mean (0.212), correlation (0.499414)*/, -9,-3, -6,2/*mean (0.212168), correlation (0.480739)*/, -1,-10, 1,12/*mean (0.212731), correlation (0.502523)*/, -13,1, -8,-10/*mean (0.21327), correlation (0.489786)*/, 8,-11, 10,-6/*mean (0.214159), correlation (0.488246)*/, 2,-13, 3,-6/*mean (0.216993), correlation (0.50287)*/, 7,-13, 12,-9/*mean (0.223639), correlation (0.470502)*/, -10,-10, -5,-7/*mean (0.224089), correlation (0.500852)*/, -10,-8, -8,-13/*mean (0.228666), correlation (0.502629)*/, 4,-6, 8,5/*mean (0.22906), correlation (0.498305)*/, 3,12, 8,-13/*mean (0.233378), correlation (0.503825)*/, -4,2, -3,-3/*mean (0.234323), correlation (0.476692)*/, 5,-13, 10,-12/*mean (0.236392), correlation (0.475462)*/, 4,-13, 5,-1/*mean (0.236842), correlation (0.504132)*/, -9,9, -4,3/*mean (0.236977), correlation (0.497739)*/, 0,3, 3,-9/*mean (0.24314), correlation (0.499398)*/, -12,1, -6,1/*mean (0.243297), correlation (0.489447)*/, 3,2, 4,-8/*mean (0.00155196), correlation (0.553496)*/, -10,-10, -10,9/*mean (0.00239541), correlation (0.54297)*/, 8,-13, 12,12/*mean (0.0034413), correlation (0.544361)*/, -8,-12, -6,-5/*mean (0.003565), correlation (0.551225)*/, 2,2, 3,7/*mean (0.00835583), correlation (0.55285)*/, 10,6, 11,-8/*mean (0.00885065), correlation (0.540913)*/, 6,8, 8,-12/*mean (0.0101552), correlation (0.551085)*/, -7,10, -6,5/*mean (0.0102227), correlation (0.533635)*/, -3,-9, -3,9/*mean (0.0110211), correlation (0.543121)*/, -1,-13, -1,5/*mean (0.0113473), correlation (0.550173)*/, -3,-7, -3,4/*mean (0.0140913), correlation (0.554774)*/, -8,-2, -8,3/*mean (0.017049), correlation (0.55461)*/, 4,2, 12,12/*mean (0.01778), correlation (0.546921)*/, 2,-5, 3,11/*mean (0.0224022), correlation (0.549667)*/, 6,-9, 11,-13/*mean (0.029161), correlation (0.546295)*/, 3,-1, 7,12/*mean (0.0303081), correlation (0.548599)*/, 11,-1, 12,4/*mean (0.0355151), correlation (0.523943)*/, -3,0, -3,6/*mean (0.0417904), correlation (0.543395)*/, 4,-11, 4,12/*mean (0.0487292), correlation (0.542818)*/, 2,-4, 2,1/*mean (0.0575124), correlation (0.554888)*/, -10,-6, -8,1/*mean (0.0594242), correlation (0.544026)*/, -13,7, -11,1/*mean (0.0597391), correlation (0.550524)*/, -13,12, -11,-13/*mean (0.0608974), correlation (0.55383)*/, 6,0, 11,-13/*mean (0.065126), correlation (0.552006)*/, 0,-1, 1,4/*mean (0.074224), correlation (0.546372)*/, -13,3, -9,-2/*mean (0.0808592), correlation (0.554875)*/, -9,8, -6,-3/*mean (0.0883378), correlation (0.551178)*/, -13,-6, -8,-2/*mean (0.0901035), correlation (0.548446)*/, 5,-9, 8,10/*mean (0.0949843), correlation (0.554694)*/, 2,7, 3,-9/*mean (0.0994152), correlation (0.550979)*/, -1,-6, -1,-1/*mean (0.10045), correlation (0.552714)*/, 9,5, 11,-2/*mean (0.100686), correlation (0.552594)*/, 11,-3, 12,-8/*mean (0.101091), correlation (0.532394)*/, 3,0, 3,5/*mean (0.101147), correlation (0.525576)*/, -1,4, 0,10/*mean (0.105263), correlation (0.531498)*/, 3,-6, 4,5/*mean (0.110785), correlation (0.540491)*/, -13,0, -10,5/*mean (0.112798), correlation (0.536582)*/, 5,8, 12,11/*mean (0.114181), correlation (0.555793)*/, 8,9, 9,-6/*mean (0.117431), correlation (0.553763)*/, 7,-4, 8,-12/*mean (0.118522), correlation (0.553452)*/, -10,4, -10,9/*mean (0.12094), correlation (0.554785)*/, 7,3, 12,4/*mean (0.122582), correlation (0.555825)*/, 9,-7, 10,-2/*mean (0.124978), correlation (0.549846)*/, 7,0, 12,-2/*mean (0.127002), correlation (0.537452)*/, -1,-6, 0,-11/*mean (0.127148), correlation (0.547401)*/ ]); var H = new jsfeat.matrix_t(3, 3, jsfeat.F32_t|jsfeat.C1_t); var patch_img = new jsfeat.matrix_t(32, 32, jsfeat.U8_t|jsfeat.C1_t); var rectify_patch = function(src, dst, angle, px, py, psize) { var cosine = Math.cos(angle); var sine = Math.sin(angle); H.data[0] = cosine, H.data[1] = -sine, H.data[2] = (-cosine + sine ) * psize*0.5 + px, H.data[3] = sine, H.data[4] = cosine, H.data[5] = (-sine - cosine) * psize*0.5 + py; jsfeat.imgproc.warp_affine(src, dst, H, 128); } return { describe: function(src, corners, count, descriptors) { var DESCR_SIZE = 32; // bytes; var i=0,b=0,px=0.0,py=0.0,angle=0.0; var t0=0, t1=0, val=0; var img = src.data, w = src.cols, h = src.rows; var patch_d = patch_img.data; var patch_off = 16*32 + 16; // center of patch var patt=0; if(!(descriptors.type&jsfeat.U8_t)) { // relocate to U8 type descriptors.type = jsfeat.U8_t; descriptors.cols = DESCR_SIZE; descriptors.rows = count; descriptors.channel = 1; descriptors.allocate(); } else { descriptors.resize(DESCR_SIZE, count, 1); } var descr_d = descriptors.data; var descr_off = 0; for(i = 0; i < count; ++i) { px = corners[i].x; py = corners[i].y; angle = corners[i].angle; rectify_patch(src, patch_img, angle, px, py, 32); // describe the patch patt = 0; for (b = 0; b < DESCR_SIZE; ++b) { t0 = patch_d[patch_off + bit_pattern_31_[patt+1] * 32 + bit_pattern_31_[patt]]; patt += 2 t1 = patch_d[patch_off + bit_pattern_31_[patt+1] * 32 + bit_pattern_31_[patt]]; patt += 2 val = (t0 < t1)|0; t0 = patch_d[patch_off + bit_pattern_31_[patt+1] * 32 + bit_pattern_31_[patt]]; patt += 2 t1 = patch_d[patch_off + bit_pattern_31_[patt+1] * 32 + bit_pattern_31_[patt]]; patt += 2 val |= (t0 < t1) << 1; t0 = patch_d[patch_off + bit_pattern_31_[patt+1] * 32 + bit_pattern_31_[patt]]; patt += 2 t1 = patch_d[patch_off + bit_pattern_31_[patt+1] * 32 + bit_pattern_31_[patt]]; patt += 2 val |= (t0 < t1) << 2; t0 = patch_d[patch_off + bit_pattern_31_[patt+1] * 32 + bit_pattern_31_[patt]]; patt += 2 t1 = patch_d[patch_off + bit_pattern_31_[patt+1] * 32 + bit_pattern_31_[patt]]; patt += 2 val |= (t0 < t1) << 3; t0 = patch_d[patch_off + bit_pattern_31_[patt+1] * 32 + bit_pattern_31_[patt]]; patt += 2 t1 = patch_d[patch_off + bit_pattern_31_[patt+1] * 32 + bit_pattern_31_[patt]]; patt += 2 val |= (t0 < t1) << 4; t0 = patch_d[patch_off + bit_pattern_31_[patt+1] * 32 + bit_pattern_31_[patt]]; patt += 2 t1 = patch_d[patch_off + bit_pattern_31_[patt+1] * 32 + bit_pattern_31_[patt]]; patt += 2 val |= (t0 < t1) << 5; t0 = patch_d[patch_off + bit_pattern_31_[patt+1] * 32 + bit_pattern_31_[patt]]; patt += 2 t1 = patch_d[patch_off + bit_pattern_31_[patt+1] * 32 + bit_pattern_31_[patt]]; patt += 2 val |= (t0 < t1) << 6; t0 = patch_d[patch_off + bit_pattern_31_[patt+1] * 32 + bit_pattern_31_[patt]]; patt += 2 t1 = patch_d[patch_off + bit_pattern_31_[patt+1] * 32 + bit_pattern_31_[patt]]; patt += 2 val |= (t0 < t1) << 7; descr_d[descr_off+b] = val; } descr_off += DESCR_SIZE; } } }; })(); global.orb = orb; })(jsfeat); /** * @author Eugene Zatepyakin / http://inspirit.ru/ * * this code is a rewrite from OpenCV's Lucas-Kanade optical flow implementation */ (function(global) { "use strict"; // var optical_flow_lk = (function() { // short link to shar deriv var scharr_deriv = jsfeat.imgproc.scharr_derivatives; return { track: function(prev_pyr, curr_pyr, prev_xy, curr_xy, count, win_size, max_iter, status, eps, min_eigen_threshold) { if (typeof max_iter === "undefined") { max_iter = 30; } if (typeof status === "undefined") { status = new Uint8Array(count); } if (typeof eps === "undefined") { eps = 0.01; } if (typeof min_eigen_threshold === "undefined") { min_eigen_threshold = 0.0001; } var half_win = (win_size-1)*0.5; var win_area = (win_size*win_size)|0; var win_area2 = win_area << 1; var prev_imgs = prev_pyr.data, next_imgs = curr_pyr.data; var img_prev=prev_imgs[0].data,img_next=next_imgs[0].data; var w0 = prev_imgs[0].cols, h0 = prev_imgs[0].rows,lw=0,lh=0; var iwin_node = jsfeat.cache.get_buffer(win_area<<2); var deriv_iwin_node = jsfeat.cache.get_buffer(win_area2<<2); var deriv_lev_node = jsfeat.cache.get_buffer((h0*(w0<<1))<<2); var deriv_m = new jsfeat.matrix_t(w0, h0, jsfeat.S32C2_t, deriv_lev_node.data); var iwin_buf = iwin_node.i32; var deriv_iwin = deriv_iwin_node.i32; var deriv_lev = deriv_lev_node.i32; var dstep=0,src=0,dsrc=0,iptr=0,diptr=0,jptr=0; var lev_sc=0.0,prev_x=0.0,prev_y=0.0,next_x=0.0,next_y=0.0; var prev_delta_x=0.0,prev_delta_y=0.0,delta_x=0.0,delta_y=0.0; var iprev_x=0,iprev_y=0,inext_x=0,inext_y=0; var i=0,j=0,x=0,y=0,level=0,ptid=0,iter=0; var brd_tl=0,brd_r=0,brd_b=0; var a=0.0,b=0.0,b1=0.0,b2=0.0; // fixed point math var W_BITS14 = 14; var W_BITS4 = 14; var W_BITS1m5 = W_BITS4 - 5; var W_BITS1m51 = (1 << ((W_BITS1m5) - 1)); var W_BITS14_ = (1 << W_BITS14); var W_BITS41 = (1 << ((W_BITS4) - 1)); var FLT_SCALE = 1.0/(1 << 20); var iw00=0,iw01=0,iw10=0,iw11=0,ival=0,ixval=0,iyval=0; var A11=0.0,A12=0.0,A22=0.0,D=0.0,min_eig=0.0; var FLT_EPSILON = 0.00000011920929; eps *= eps; // reset status for(; i < count; ++i) { status[i] = 1; } var max_level = (prev_pyr.levels - 1)|0; level = max_level; for(; level >= 0; --level) { lev_sc = (1.0/(1 << level)); lw = w0 >> level; lh = h0 >> level; dstep = lw << 1; img_prev = prev_imgs[level].data; img_next = next_imgs[level].data; brd_r = (lw - win_size)|0; brd_b = (lh - win_size)|0; // calculate level derivatives scharr_deriv(prev_imgs[level], deriv_m); // iterate through points for(ptid = 0; ptid < count; ++ptid) { i = ptid << 1; j = i + 1; prev_x = prev_xy[i]*lev_sc; prev_y = prev_xy[j]*lev_sc; if( level == max_level ) { next_x = prev_x; next_y = prev_y; } else { next_x = curr_xy[i]*2.0; next_y = curr_xy[j]*2.0; } curr_xy[i] = next_x; curr_xy[j] = next_y; prev_x -= half_win; prev_y -= half_win; iprev_x = prev_x|0; iprev_y = prev_y|0; // border check x = (iprev_x <= brd_tl)|(iprev_x >= brd_r)|(iprev_y <= brd_tl)|(iprev_y >= brd_b); if( x != 0 ) { if( level == 0 ) { status[ptid] = 0; } continue; } a = prev_x - iprev_x; b = prev_y - iprev_y; iw00 = (((1.0 - a)*(1.0 - b)*W_BITS14_) + 0.5)|0; iw01 = ((a*(1.0 - b)*W_BITS14_) + 0.5)|0; iw10 = (((1.0 - a)*b*W_BITS14_) + 0.5)|0; iw11 = (W_BITS14_ - iw00 - iw01 - iw10); A11 = 0.0, A12 = 0.0, A22 = 0.0; // extract the patch from the first image, compute covariation matrix of derivatives for( y = 0; y < win_size; ++y ) { src = ( (y + iprev_y)*lw + iprev_x )|0; dsrc = src << 1; iptr = (y*win_size)|0; diptr = iptr << 1; for(x = 0 ; x < win_size; ++x, ++src, ++iptr, dsrc += 2) { ival = ( (img_prev[src])*iw00 + (img_prev[src+1])*iw01 + (img_prev[src+lw])*iw10 + (img_prev[src+lw+1])*iw11 ); ival = (((ival) + W_BITS1m51) >> (W_BITS1m5)); ixval = ( deriv_lev[dsrc]*iw00 + deriv_lev[dsrc+2]*iw01 + deriv_lev[dsrc+dstep]*iw10 + deriv_lev[dsrc+dstep+2]*iw11 ); ixval = (((ixval) + W_BITS41) >> (W_BITS4)); iyval = ( deriv_lev[dsrc+1]*iw00 + deriv_lev[dsrc+3]*iw01 + deriv_lev[dsrc+dstep+1]*iw10 + deriv_lev[dsrc+dstep+3]*iw11 ); iyval = (((iyval) + W_BITS41) >> (W_BITS4)); iwin_buf[iptr] = ival; deriv_iwin[diptr++] = ixval; deriv_iwin[diptr++] = iyval; A11 += ixval*ixval; A12 += ixval*iyval; A22 += iyval*iyval; } } A11 *= FLT_SCALE; A12 *= FLT_SCALE; A22 *= FLT_SCALE; D = A11*A22 - A12*A12; min_eig = (A22 + A11 - Math.sqrt((A11-A22)*(A11-A22) + 4.0*A12*A12)) / win_area2; if( min_eig < min_eigen_threshold || D < FLT_EPSILON ) { if( level == 0 ) { status[ptid] = 0; } continue; } D = 1.0/D; next_x -= half_win; next_y -= half_win; prev_delta_x = 0.0; prev_delta_y = 0.0; for( iter = 0; iter < max_iter; ++iter ) { inext_x = next_x|0; inext_y = next_y|0; x = (inext_x <= brd_tl)|(inext_x >= brd_r)|(inext_y <= brd_tl)|(inext_y >= brd_b); if( x != 0 ) { if( level == 0 ) { status[ptid] = 0; } break; } a = next_x - inext_x; b = next_y - inext_y; iw00 = (((1.0 - a)*(1.0 - b)*W_BITS14_) + 0.5)|0; iw01 = ((a*(1.0 - b)*W_BITS14_) + 0.5)|0; iw10 = (((1.0 - a)*b*W_BITS14_) + 0.5)|0; iw11 = (W_BITS14_ - iw00 - iw01 - iw10); b1 = 0.0, b2 = 0.0; for( y = 0; y < win_size; ++y ) { jptr = ( (y + inext_y)*lw + inext_x )|0; iptr = (y*win_size)|0; diptr = iptr << 1; for( x = 0 ; x < win_size; ++x, ++jptr, ++iptr ) { ival = ( (img_next[jptr])*iw00 + (img_next[jptr+1])*iw01 + (img_next[jptr+lw])*iw10 + (img_next[jptr+lw+1])*iw11 ); ival = (((ival) + W_BITS1m51) >> (W_BITS1m5)); ival = (ival - iwin_buf[iptr]); b1 += ival * deriv_iwin[diptr++]; b2 += ival * deriv_iwin[diptr++]; } } b1 *= FLT_SCALE; b2 *= FLT_SCALE; delta_x = ((A12*b2 - A22*b1) * D); delta_y = ((A12*b1 - A11*b2) * D); next_x += delta_x; next_y += delta_y; curr_xy[i] = next_x + half_win; curr_xy[j] = next_y + half_win; if( delta_x*delta_x + delta_y*delta_y <= eps ) { break; } if( iter > 0 && Math.abs(delta_x + prev_delta_x) < 0.01 && Math.abs(delta_y + prev_delta_y) < 0.01 ) { curr_xy[i] -= delta_x*0.5; curr_xy[j] -= delta_y*0.5; break; } prev_delta_x = delta_x; prev_delta_y = delta_y; } } // points loop } // levels loop jsfeat.cache.put_buffer(iwin_node); jsfeat.cache.put_buffer(deriv_iwin_node); jsfeat.cache.put_buffer(deriv_lev_node); } }; })(); global.optical_flow_lk = optical_flow_lk; })(jsfeat); /** * @author Eugene Zatepyakin / http://inspirit.ru/ * * this code is a rewrite from https://github.com/mtschirs/js-objectdetect implementation * @author Martin Tschirsich / http://www.tu-darmstadt.de/~m_t */ (function(global) { "use strict"; // var haar = (function() { var _group_func = function(r1, r2) { var distance = (r1.width * 0.25 + 0.5)|0; return r2.x <= r1.x + distance && r2.x >= r1.x - distance && r2.y <= r1.y + distance && r2.y >= r1.y - distance && r2.width <= (r1.width * 1.5 + 0.5)|0 && (r2.width * 1.5 + 0.5)|0 >= r1.width; } return { edges_density: 0.07, detect_single_scale: function(int_sum, int_sqsum, int_tilted, int_canny_sum, width, height, scale, classifier) { var win_w = (classifier.size[0] * scale)|0, win_h = (classifier.size[1] * scale)|0, step_x = (0.5 * scale + 1.5)|0, step_y = step_x; var i,j,k,x,y,ex=(width-win_w)|0,ey=(height-win_h)|0; var w1=(width+1)|0,edge_dens,mean,variance,std; var inv_area = 1.0 / (win_w * win_h); var stages,stage,trees,tree,sn,tn,fn,found=true,stage_thresh,stage_sum,tree_sum,feature,features; var fi_a,fi_b,fi_c,fi_d,fw,fh; var ii_a=0,ii_b=win_w,ii_c=win_h*w1,ii_d=ii_c+win_w; var edges_thresh = ((win_w*win_h) * 0xff * this.edges_density)|0; // if too much gradient we also can skip //var edges_thresh_high = ((win_w*win_h) * 0xff * 0.3)|0; var rects = []; for(y = 0; y < ey; y += step_y) { ii_a = y * w1; for(x = 0; x < ex; x += step_x, ii_a += step_x) { mean = int_sum[ii_a] - int_sum[ii_a+ii_b] - int_sum[ii_a+ii_c] + int_sum[ii_a+ii_d]; // canny prune if(int_canny_sum) { edge_dens = (int_canny_sum[ii_a] - int_canny_sum[ii_a+ii_b] - int_canny_sum[ii_a+ii_c] + int_canny_sum[ii_a+ii_d]); if(edge_dens < edges_thresh || mean < 20) { x += step_x, ii_a += step_x; continue; } } mean *= inv_area; variance = (int_sqsum[ii_a] - int_sqsum[ii_a+ii_b] - int_sqsum[ii_a+ii_c] + int_sqsum[ii_a+ii_d]) * inv_area - mean * mean; std = variance > 0. ? Math.sqrt(variance) : 1; stages = classifier.complexClassifiers; sn = stages.length; found = true; for(i = 0; i < sn; ++i) { stage = stages[i]; stage_thresh = stage.threshold; trees = stage.simpleClassifiers; tn = trees.length; stage_sum = 0; for(j = 0; j < tn; ++j) { tree = trees[j]; tree_sum = 0; features = tree.features; fn = features.length; if(tree.tilted === 1) { for(k=0; k < fn; ++k) { feature = features[k]; fi_a = ~~(x + feature[0] * scale) + ~~(y + feature[1] * scale) * w1; fw = ~~(feature[2] * scale); fh = ~~(feature[3] * scale); fi_b = fw * w1; fi_c = fh * w1; tree_sum += (int_tilted[fi_a] - int_tilted[fi_a + fw + fi_b] - int_tilted[fi_a - fh + fi_c] + int_tilted[fi_a + fw - fh + fi_b + fi_c]) * feature[4]; } } else { for(k=0; k < fn; ++k) { feature = features[k]; fi_a = ~~(x + feature[0] * scale) + ~~(y + feature[1] * scale) * w1; fw = ~~(feature[2] * scale); fh = ~~(feature[3] * scale); fi_c = fh * w1; tree_sum += (int_sum[fi_a] - int_sum[fi_a+fw] - int_sum[fi_a+fi_c] + int_sum[fi_a+fi_c+fw]) * feature[4]; } } stage_sum += (tree_sum * inv_area < tree.threshold * std) ? tree.left_val : tree.right_val; } if (stage_sum < stage_thresh) { found = false; break; } } if(found) { rects.push({"x" : x, "y" : y, "width" : win_w, "height" : win_h, "neighbor" : 1, "confidence" : stage_sum}); x += step_x, ii_a += step_x; } } } return rects; }, detect_multi_scale: function(int_sum, int_sqsum, int_tilted, int_canny_sum, width, height, classifier, scale_factor, scale_min) { if (typeof scale_factor === "undefined") { scale_factor = 1.2; } if (typeof scale_min === "undefined") { scale_min = 1.0; } var win_w = classifier.size[0]; var win_h = classifier.size[1]; var rects = []; while (scale_min * win_w < width && scale_min * win_h < height) { rects = rects.concat(this.detect_single_scale(int_sum, int_sqsum, int_tilted, int_canny_sum, width, height, scale_min, classifier)); scale_min *= scale_factor; } return rects; }, // OpenCV method to group detected rectangles group_rectangles: function(rects, min_neighbors) { if (typeof min_neighbors === "undefined") { min_neighbors = 1; } var i, j, n = rects.length; var node = []; for (i = 0; i < n; ++i) { node[i] = {"parent" : -1, "element" : rects[i], "rank" : 0}; } for (i = 0; i < n; ++i) { if (!node[i].element) continue; var root = i; while (node[root].parent != -1) root = node[root].parent; for (j = 0; j < n; ++j) { if( i != j && node[j].element && _group_func(node[i].element, node[j].element)) { var root2 = j; while (node[root2].parent != -1) root2 = node[root2].parent; if(root2 != root) { if(node[root].rank > node[root2].rank) node[root2].parent = root; else { node[root].parent = root2; if (node[root].rank == node[root2].rank) node[root2].rank++; root = root2; } /* compress path from node2 to the root: */ var temp, node2 = j; while (node[node2].parent != -1) { temp = node2; node2 = node[node2].parent; node[temp].parent = root; } /* compress path from node to the root: */ node2 = i; while (node[node2].parent != -1) { temp = node2; node2 = node[node2].parent; node[temp].parent = root; } } } } } var idx_seq = []; var class_idx = 0; for(i = 0; i < n; i++) { j = -1; var node1 = i; if(node[node1].element) { while (node[node1].parent != -1) node1 = node[node1].parent; if(node[node1].rank >= 0) node[node1].rank = ~class_idx++; j = ~node[node1].rank; } idx_seq[i] = j; } var comps = []; for (i = 0; i < class_idx+1; ++i) { comps[i] = {"neighbors" : 0, "x" : 0, "y" : 0, "width" : 0, "height" : 0, "confidence" : 0}; } // count number of neighbors for(i = 0; i < n; ++i) { var r1 = rects[i]; var idx = idx_seq[i]; if (comps[idx].neighbors == 0) comps[idx].confidence = r1.confidence; ++comps[idx].neighbors; comps[idx].x += r1.x; comps[idx].y += r1.y; comps[idx].width += r1.width; comps[idx].height += r1.height; comps[idx].confidence = Math.max(comps[idx].confidence, r1.confidence); } var seq2 = []; // calculate average bounding box for(i = 0; i < class_idx; ++i) { n = comps[i].neighbors; if (n >= min_neighbors) seq2.push({"x" : (comps[i].x * 2 + n) / (2 * n), "y" : (comps[i].y * 2 + n) / (2 * n), "width" : (comps[i].width * 2 + n) / (2 * n), "height" : (comps[i].height * 2 + n) / (2 * n), "neighbors" : comps[i].neighbors, "confidence" : comps[i].confidence}); } var result_seq = []; n = seq2.length; // filter out small face rectangles inside large face rectangles for(i = 0; i < n; ++i) { var r1 = seq2[i]; var flag = true; for(j = 0; j < n; ++j) { var r2 = seq2[j]; var distance = (r2.width * 0.25 + 0.5)|0; if(i != j && r1.x >= r2.x - distance && r1.y >= r2.y - distance && r1.x + r1.width <= r2.x + r2.width + distance && r1.y + r1.height <= r2.y + r2.height + distance && (r2.neighbors > Math.max(3, r1.neighbors) || r1.neighbors < 3)) { flag = false; break; } } if(flag) result_seq.push(r1); } return result_seq; } }; })(); global.haar = haar; })(jsfeat); /** * BBF: Brightness Binary Feature * * @author Eugene Zatepyakin / http://inspirit.ru/ * * this code is a rewrite from https://github.com/liuliu/ccv implementation * @author Liu Liu / http://liuliu.me/ * * The original paper refers to: YEF? Real-Time Object Detection, Yotam Abramson and Bruno Steux */ (function(global) { "use strict"; // var bbf = (function() { var _group_func = function(r1, r2) { var distance = (r1.width * 0.25 + 0.5)|0; return r2.x <= r1.x + distance && r2.x >= r1.x - distance && r2.y <= r1.y + distance && r2.y >= r1.y - distance && r2.width <= (r1.width * 1.5 + 0.5)|0 && (r2.width * 1.5 + 0.5)|0 >= r1.width; } var img_pyr = new jsfeat.pyramid_t(1); return { interval: 4, scale: 1.1486, next: 5, scale_to: 1, // make features local copy // to avoid array allocation with each scale // this is strange but array works faster than Int32 version??? prepare_cascade: function(cascade) { var sn = cascade.stage_classifier.length; for (var j = 0; j < sn; j++) { var orig_feature = cascade.stage_classifier[j].feature; var f_cnt = cascade.stage_classifier[j].count; var feature = cascade.stage_classifier[j]._feature = new Array(f_cnt); for (var k = 0; k < f_cnt; k++) { feature[k] = {"size" : orig_feature[k].size, "px" : new Array(orig_feature[k].size), "pz" : new Array(orig_feature[k].size), "nx" : new Array(orig_feature[k].size), "nz" : new Array(orig_feature[k].size)}; } } }, build_pyramid: function(src, min_width, min_height, interval) { if (typeof interval === "undefined") { interval = 4; } var sw=src.cols,sh=src.rows; var i=0,nw=0,nh=0; var new_pyr=false; var src0=src,src1=src; var data_type = jsfeat.U8_t | jsfeat.C1_t; this.interval = interval; this.scale = Math.pow(2, 1 / (this.interval + 1)); this.next = (this.interval + 1)|0; this.scale_to = (Math.log(Math.min(sw / min_width, sh / min_height)) / Math.log(this.scale))|0; var pyr_l = ((this.scale_to + this.next * 2) * 4) | 0; if(img_pyr.levels != pyr_l) { img_pyr.levels = pyr_l; img_pyr.data = new Array(pyr_l); new_pyr = true; img_pyr.data[0] = src; // first is src } for (i = 1; i <= this.interval; ++i) { nw = (sw / Math.pow(this.scale, i))|0; nh = (sh / Math.pow(this.scale, i))|0; src0 = img_pyr.data[i<<2]; if(new_pyr || nw != src0.cols || nh != src0.rows) { img_pyr.data[i<<2] = new jsfeat.matrix_t(nw, nh, data_type); src0 = img_pyr.data[i<<2]; } jsfeat.imgproc.resample(src, src0, nw, nh); } for (i = this.next; i < this.scale_to + this.next * 2; ++i) { src1 = img_pyr.data[(i << 2) - (this.next << 2)]; src0 = img_pyr.data[i<<2]; nw = src1.cols >> 1; nh = src1.rows >> 1; if(new_pyr || nw != src0.cols || nh != src0.rows) { img_pyr.data[i<<2] = new jsfeat.matrix_t(nw, nh, data_type); src0 = img_pyr.data[i<<2]; } jsfeat.imgproc.pyrdown(src1, src0); } for (i = this.next * 2; i < this.scale_to + this.next * 2; ++i) { src1 = img_pyr.data[(i << 2) - (this.next << 2)]; nw = src1.cols >> 1; nh = src1.rows >> 1; src0 = img_pyr.data[(i<<2)+1]; if(new_pyr || nw != src0.cols || nh != src0.rows) { img_pyr.data[(i<<2)+1] = new jsfeat.matrix_t(nw, nh, data_type); src0 = img_pyr.data[(i<<2)+1]; } jsfeat.imgproc.pyrdown(src1, src0, 1, 0); // src0 = img_pyr.data[(i<<2)+2]; if(new_pyr || nw != src0.cols || nh != src0.rows) { img_pyr.data[(i<<2)+2] = new jsfeat.matrix_t(nw, nh, data_type); src0 = img_pyr.data[(i<<2)+2]; } jsfeat.imgproc.pyrdown(src1, src0, 0, 1); // src0 = img_pyr.data[(i<<2)+3]; if(new_pyr || nw != src0.cols || nh != src0.rows) { img_pyr.data[(i<<2)+3] = new jsfeat.matrix_t(nw, nh, data_type); src0 = img_pyr.data[(i<<2)+3]; } jsfeat.imgproc.pyrdown(src1, src0, 1, 1); } return img_pyr; }, detect: function(pyramid, cascade) { var interval = this.interval; var scale = this.scale; var next = this.next; var scale_upto = this.scale_to; var i=0,j=0,k=0,n=0,x=0,y=0,q=0,sn=0,f_cnt=0,q_cnt=0,p=0,pmin=0,nmax=0,f=0,i4=0,qw=0,qh=0; var sum=0.0, alpha, feature, orig_feature, feature_k, feature_o, flag = true, shortcut=true; var scale_x = 1.0, scale_y = 1.0; var dx = [0, 1, 0, 1]; var dy = [0, 0, 1, 1]; var seq = []; var pyr=pyramid.data, bpp = 1, bpp2 = 2, bpp4 = 4; var u8 = [], u8o = [0,0,0]; var step = [0,0,0]; var paddings = [0,0,0]; for (i = 0; i < scale_upto; i++) { i4 = (i<<2); qw = pyr[i4 + (next << 3)].cols - (cascade.width >> 2); qh = pyr[i4 + (next << 3)].rows - (cascade.height >> 2); step[0] = pyr[i4].cols * bpp; step[1] = pyr[i4 + (next << 2)].cols * bpp; step[2] = pyr[i4 + (next << 3)].cols * bpp; paddings[0] = (pyr[i4].cols * bpp4) - (qw * bpp4); paddings[1] = (pyr[i4 + (next << 2)].cols * bpp2) - (qw * bpp2); paddings[2] = (pyr[i4 + (next << 3)].cols * bpp) - (qw * bpp); sn = cascade.stage_classifier.length; for (j = 0; j < sn; j++) { orig_feature = cascade.stage_classifier[j].feature; feature = cascade.stage_classifier[j]._feature; f_cnt = cascade.stage_classifier[j].count; for (k = 0; k < f_cnt; k++) { feature_k = feature[k]; feature_o = orig_feature[k]; q_cnt = feature_o.size|0; for (q = 0; q < q_cnt; q++) { feature_k.px[q] = (feature_o.px[q] * bpp) + feature_o.py[q] * step[feature_o.pz[q]]; feature_k.pz[q] = feature_o.pz[q]; feature_k.nx[q] = (feature_o.nx[q] * bpp) + feature_o.ny[q] * step[feature_o.nz[q]]; feature_k.nz[q] = feature_o.nz[q]; } } } u8[0] = pyr[i4].data; u8[1] = pyr[i4 + (next<<2)].data; for (q = 0; q < 4; q++) { u8[2] = pyr[i4 + (next<<3) + q].data; u8o[0] = (dx[q]*bpp2) + dy[q] * (pyr[i4].cols*bpp2); u8o[1] = (dx[q]*bpp) + dy[q] * (pyr[i4 + (next<<2)].cols*bpp); u8o[2] = 0; for (y = 0; y < qh; y++) { for (x = 0; x < qw; x++) { sum = 0; flag = true; sn = cascade.stage_classifier.length; for (j = 0; j < sn; j++) { sum = 0; alpha = cascade.stage_classifier[j].alpha; feature = cascade.stage_classifier[j]._feature; f_cnt = cascade.stage_classifier[j].count; for (k = 0; k < f_cnt; k++) { feature_k = feature[k]; pmin = u8[feature_k.pz[0]][u8o[feature_k.pz[0]] + feature_k.px[0]]; nmax = u8[feature_k.nz[0]][u8o[feature_k.nz[0]] + feature_k.nx[0]]; if (pmin <= nmax) { sum += alpha[k << 1]; } else { shortcut = true; q_cnt = feature_k.size; for (f = 1; f < q_cnt; f++) { if (feature_k.pz[f] >= 0) { p = u8[feature_k.pz[f]][u8o[feature_k.pz[f]] + feature_k.px[f]]; if (p < pmin) { if (p <= nmax) { shortcut = false; break; } pmin = p; } } if (feature_k.nz[f] >= 0) { n = u8[feature_k.nz[f]][u8o[feature_k.nz[f]] + feature_k.nx[f]]; if (n > nmax) { if (pmin <= n) { shortcut = false; break; } nmax = n; } } } sum += (shortcut) ? alpha[(k << 1) + 1] : alpha[k << 1]; } } if (sum < cascade.stage_classifier[j].threshold) { flag = false; break; } } if (flag) { seq.push({"x" : (x * 4 + dx[q] * 2) * scale_x, "y" : (y * 4 + dy[q] * 2) * scale_y, "width" : cascade.width * scale_x, "height" : cascade.height * scale_y, "neighbor" : 1, "confidence" : sum}); ++x; u8o[0] += bpp4; u8o[1] += bpp2; u8o[2] += bpp; } u8o[0] += bpp4; u8o[1] += bpp2; u8o[2] += bpp; } u8o[0] += paddings[0]; u8o[1] += paddings[1]; u8o[2] += paddings[2]; } } scale_x *= scale; scale_y *= scale; } return seq; }, // OpenCV method to group detected rectangles group_rectangles: function(rects, min_neighbors) { if (typeof min_neighbors === "undefined") { min_neighbors = 1; } var i, j, n = rects.length; var node = []; for (i = 0; i < n; ++i) { node[i] = {"parent" : -1, "element" : rects[i], "rank" : 0}; } for (i = 0; i < n; ++i) { if (!node[i].element) continue; var root = i; while (node[root].parent != -1) root = node[root].parent; for (j = 0; j < n; ++j) { if( i != j && node[j].element && _group_func(node[i].element, node[j].element)) { var root2 = j; while (node[root2].parent != -1) root2 = node[root2].parent; if(root2 != root) { if(node[root].rank > node[root2].rank) node[root2].parent = root; else { node[root].parent = root2; if (node[root].rank == node[root2].rank) node[root2].rank++; root = root2; } /* compress path from node2 to the root: */ var temp, node2 = j; while (node[node2].parent != -1) { temp = node2; node2 = node[node2].parent; node[temp].parent = root; } /* compress path from node to the root: */ node2 = i; while (node[node2].parent != -1) { temp = node2; node2 = node[node2].parent; node[temp].parent = root; } } } } } var idx_seq = []; var class_idx = 0; for(i = 0; i < n; i++) { j = -1; var node1 = i; if(node[node1].element) { while (node[node1].parent != -1) node1 = node[node1].parent; if(node[node1].rank >= 0) node[node1].rank = ~class_idx++; j = ~node[node1].rank; } idx_seq[i] = j; } var comps = []; for (i = 0; i < class_idx+1; ++i) { comps[i] = {"neighbors" : 0, "x" : 0, "y" : 0, "width" : 0, "height" : 0, "confidence" : 0}; } // count number of neighbors for(i = 0; i < n; ++i) { var r1 = rects[i]; var idx = idx_seq[i]; if (comps[idx].neighbors == 0) comps[idx].confidence = r1.confidence; ++comps[idx].neighbors; comps[idx].x += r1.x; comps[idx].y += r1.y; comps[idx].width += r1.width; comps[idx].height += r1.height; comps[idx].confidence = Math.max(comps[idx].confidence, r1.confidence); } var seq2 = []; // calculate average bounding box for(i = 0; i < class_idx; ++i) { n = comps[i].neighbors; if (n >= min_neighbors) seq2.push({"x" : (comps[i].x * 2 + n) / (2 * n), "y" : (comps[i].y * 2 + n) / (2 * n), "width" : (comps[i].width * 2 + n) / (2 * n), "height" : (comps[i].height * 2 + n) / (2 * n), "neighbors" : comps[i].neighbors, "confidence" : comps[i].confidence}); } var result_seq = []; n = seq2.length; // filter out small face rectangles inside large face rectangles for(i = 0; i < n; ++i) { var r1 = seq2[i]; var flag = true; for(j = 0; j < n; ++j) { var r2 = seq2[j]; var distance = (r2.width * 0.25 + 0.5)|0; if(i != j && r1.x >= r2.x - distance && r1.y >= r2.y - distance && r1.x + r1.width <= r2.x + r2.width + distance && r1.y + r1.height <= r2.y + r2.height + distance && (r2.neighbors > Math.max(3, r1.neighbors) || r1.neighbors < 3)) { flag = false; break; } } if(flag) result_seq.push(r1); } return result_seq; } }; })(); global.bbf = bbf; })(jsfeat); /** * @author Eugene Zatepyakin / http://inspirit.ru/ */ (function(lib) { "use strict"; if (typeof module === "undefined" || typeof module.exports === "undefined") { // in a browser, define its namespaces in global window.jsfeat = lib; } else { // in commonjs, or when AMD wrapping has been applied, define its namespaces as exports module.exports = lib; } })(jsfeat);