/**
* @author Eugene Zatepyakin / http://inspirit.ru/
*/
// namespace ?
var jsfeat = jsfeat || { REVISION: 'ALPHA' };
/**
* @author Eugene Zatepyakin / http://inspirit.ru/
*/
(function(global) {
"use strict";
//
// CONSTANTS
var EPSILON = 0.0000001192092896;
var FLT_MIN = 1E-37;
// implementation from CCV project
// currently working only with u8,s32,f32
var U8_t = 0x0100,
S32_t = 0x0200,
F32_t = 0x0400,
S64_t = 0x0800,
F64_t = 0x1000;
var C1_t = 0x01,
C2_t = 0x02,
C3_t = 0x03,
C4_t = 0x04;
var _data_type_size = new Int32Array([ -1, 1, 4, -1, 4, -1, -1, -1, 8, -1, -1, -1, -1, -1, -1, -1, 8 ]);
var get_data_type = (function () {
return function(type) {
return (type & 0xFF00);
}
})();
var get_channel = (function () {
return function(type) {
return (type & 0xFF);
}
})();
var get_data_type_size = (function () {
return function(type) {
return _data_type_size[(type & 0xFF00) >> 8];
}
})();
// color conversion
var COLOR_RGBA2GRAY = 0;
var COLOR_RGB2GRAY = 1;
var COLOR_BGRA2GRAY = 2;
var COLOR_BGR2GRAY = 3;
// box blur option
var BOX_BLUR_NOSCALE = 0x01;
// svd options
var SVD_U_T = 0x01;
var SVD_V_T = 0x02;
var data_t = (function () {
function data_t(size_in_bytes, buffer) {
// we need align size to multiple of 8
this.size = ((size_in_bytes + 7) | 0) & -8;
if (typeof buffer === "undefined") {
this.buffer = new ArrayBuffer(this.size);
} else {
this.buffer = buffer;
this.size = buffer.length;
}
this.u8 = new Uint8Array(this.buffer);
this.i32 = new Int32Array(this.buffer);
this.f32 = new Float32Array(this.buffer);
this.f64 = new Float64Array(this.buffer);
}
return data_t;
})();
var matrix_t = (function () {
// columns, rows, data_type
function matrix_t(c, r, data_type, data_buffer) {
this.type = get_data_type(data_type)|0;
this.channel = get_channel(data_type)|0;
this.cols = c|0;
this.rows = r|0;
if (typeof data_buffer === "undefined") {
this.allocate();
} else {
this.buffer = data_buffer;
// data user asked for
this.data = this.type&U8_t ? this.buffer.u8 : (this.type&S32_t ? this.buffer.i32 : (this.type&F32_t ? this.buffer.f32 : this.buffer.f64));
}
}
matrix_t.prototype.allocate = function() {
// clear references
delete this.data;
delete this.buffer;
//
this.buffer = new data_t((this.cols * get_data_type_size(this.type) * this.channel) * this.rows);
this.data = this.type&U8_t ? this.buffer.u8 : (this.type&S32_t ? this.buffer.i32 : (this.type&F32_t ? this.buffer.f32 : this.buffer.f64));
}
matrix_t.prototype.copy_to = function(other) {
var od = other.data, td = this.data;
var i = 0, n = (this.cols*this.rows*this.channel)|0;
for(; i < n-4; i+=4) {
od[i] = td[i];
od[i+1] = td[i+1];
od[i+2] = td[i+2];
od[i+3] = td[i+3];
}
for(; i < n; ++i) {
od[i] = td[i];
}
}
matrix_t.prototype.resize = function(c, r, ch) {
if (typeof ch === "undefined") { ch = this.channel; }
// relocate buffer only if new size doesnt fit
var new_size = (c * get_data_type_size(this.type) * ch) * r;
if(new_size > this.buffer.size) {
this.cols = c;
this.rows = r;
this.channel = ch;
this.allocate();
} else {
this.cols = c;
this.rows = r;
this.channel = ch;
}
}
return matrix_t;
})();
var pyramid_t = (function () {
function pyramid_t(levels) {
this.levels = levels|0;
this.data = new Array(levels);
this.pyrdown = jsfeat.imgproc.pyrdown;
}
pyramid_t.prototype.allocate = function(start_w, start_h, data_type) {
var i = this.levels;
while(--i >= 0) {
this.data[i] = new matrix_t(start_w >> i, start_h >> i, data_type);
}
}
pyramid_t.prototype.build = function(input, skip_first_level) {
if (typeof skip_first_level === "undefined") { skip_first_level = true; }
// just copy data to first level
var i = 2, a = input, b = this.data[0];
if(!skip_first_level) {
var j=input.cols*input.rows;
while(--j >= 0) {
b.data[j] = input.data[j];
}
}
b = this.data[1];
this.pyrdown(a, b);
for(; i < this.levels; ++i) {
a = b;
b = this.data[i];
this.pyrdown(a, b);
}
}
return pyramid_t;
})();
var keypoint_t = (function () {
function keypoint_t(x,y,score,level,angle) {
if (typeof x === "undefined") { x=0; }
if (typeof y === "undefined") { y=0; }
if (typeof score === "undefined") { score=0; }
if (typeof level === "undefined") { level=0; }
if (typeof angle === "undefined") { angle=-1.0; }
this.x = x;
this.y = y;
this.score = score;
this.level = level;
this.angle = angle;
}
return keypoint_t;
})();
// data types
global.U8_t = U8_t;
global.S32_t = S32_t;
global.F32_t = F32_t;
global.S64_t = S64_t;
global.F64_t = F64_t;
// data channels
global.C1_t = C1_t;
global.C2_t = C2_t;
global.C3_t = C3_t;
global.C4_t = C4_t;
// popular formats
global.U8C1_t = U8_t | C1_t;
global.U8C3_t = U8_t | C3_t;
global.U8C4_t = U8_t | C4_t;
global.F32C1_t = F32_t | C1_t;
global.F32C2_t = F32_t | C2_t;
global.S32C1_t = S32_t | C1_t;
global.S32C2_t = S32_t | C2_t;
// constants
global.EPSILON = EPSILON;
global.FLT_MIN = FLT_MIN;
// color convert
global.COLOR_RGBA2GRAY = COLOR_RGBA2GRAY;
global.COLOR_RGB2GRAY = COLOR_RGB2GRAY;
global.COLOR_BGRA2GRAY = COLOR_BGRA2GRAY;
global.COLOR_BGR2GRAY = COLOR_BGR2GRAY;
// options
global.BOX_BLUR_NOSCALE = BOX_BLUR_NOSCALE;
global.SVD_U_T = SVD_U_T;
global.SVD_V_T = SVD_V_T;
global.get_data_type = get_data_type;
global.get_channel = get_channel;
global.get_data_type_size = get_data_type_size;
global.data_t = data_t;
global.matrix_t = matrix_t;
global.pyramid_t = pyramid_t;
global.keypoint_t = keypoint_t;
})(jsfeat);
/**
* @author Eugene Zatepyakin / http://inspirit.ru/
*/
(function(global) {
"use strict";
//
var cache = (function() {
// very primitive array cache, still need testing if it helps
// of course V8 has its own powerful cache sys but i'm not sure
// it caches several multichannel 640x480 buffer creations each frame
var _pool_node_t = (function () {
function _pool_node_t(size_in_bytes) {
this.next = null;
this.data = new jsfeat.data_t(size_in_bytes);
this.size = this.data.size;
this.buffer = this.data.buffer;
this.u8 = this.data.u8;
this.i32 = this.data.i32;
this.f32 = this.data.f32;
this.f64 = this.data.f64;
}
_pool_node_t.prototype.resize = function(size_in_bytes) {
delete this.data;
this.data = new jsfeat.data_t(size_in_bytes);
this.size = this.data.size;
this.buffer = this.data.buffer;
this.u8 = this.data.u8;
this.i32 = this.data.i32;
this.f32 = this.data.f32;
this.f64 = this.data.f64;
}
return _pool_node_t;
})();
var _pool_head, _pool_tail;
var _pool_size = 0;
return {
allocate: function(capacity, data_size) {
_pool_head = _pool_tail = new _pool_node_t(data_size);
for (var i = 0; i < capacity; ++i) {
var node = new _pool_node_t(data_size);
_pool_tail = _pool_tail.next = node;
_pool_size++;
}
},
get_buffer: function(size_in_bytes) {
// assume we have enough free nodes
var node = _pool_head;
_pool_head = _pool_head.next;
_pool_size--;
if(size_in_bytes > node.size) {
node.resize(size_in_bytes);
}
return node;
},
put_buffer: function(node) {
_pool_tail = _pool_tail.next = node;
_pool_size++;
}
};
})();
global.cache = cache;
// for now we dont need more than 30 buffers
// if having cache sys really helps we can add auto extending sys
cache.allocate(30, 640*4);
})(jsfeat);
/**
* @author Eugene Zatepyakin / http://inspirit.ru/
*/
(function(global) {
"use strict";
//
var math = (function() {
var qsort_stack = new Int32Array(48*2);
return {
get_gaussian_kernel: function(size, sigma, kernel, data_type) {
var i=0,x=0.0,t=0.0,sigma_x=0.0,scale_2x=0.0;
var sum = 0.0;
var kern_node = jsfeat.cache.get_buffer(size<<2);
var _kernel = kern_node.f32;//new Float32Array(size);
if((size&1) == 1 && size <= 7 && sigma <= 0) {
switch(size>>1) {
case 0:
_kernel[0] = 1.0;
sum = 1.0;
break;
case 1:
_kernel[0] = 0.25, _kernel[1] = 0.5, _kernel[2] = 0.25;
sum = 0.25+0.5+0.25;
break;
case 2:
_kernel[0] = 0.0625, _kernel[1] = 0.25, _kernel[2] = 0.375,
_kernel[3] = 0.25, _kernel[4] = 0.0625;
sum = 0.0625+0.25+0.375+0.25+0.0625;
break;
case 3:
_kernel[0] = 0.03125, _kernel[1] = 0.109375, _kernel[2] = 0.21875,
_kernel[3] = 0.28125, _kernel[4] = 0.21875, _kernel[5] = 0.109375, _kernel[6] = 0.03125;
sum = 0.03125+0.109375+0.21875+0.28125+0.21875+0.109375+0.03125;
break;
}
} else {
sigma_x = sigma > 0 ? sigma : ((size-1)*0.5 - 1.0)*0.3 + 0.8;
scale_2x = -0.5/(sigma_x*sigma_x);
for( ; i < size; ++i )
{
x = i - (size-1)*0.5;
t = Math.exp(scale_2x*x*x);
_kernel[i] = t;
sum += t;
}
}
if(data_type & jsfeat.U8_t) {
// int based kernel
sum = 256.0/sum;
for (i = 0; i < size; ++i) {
kernel[i] = (_kernel[i] * sum + 0.5)|0;
}
} else {
// classic kernel
sum = 1.0/sum;
for (i = 0; i < size; ++i) {
kernel[i] = _kernel[i] * sum;
}
}
jsfeat.cache.put_buffer(kern_node);
},
// model is 3x3 matrix_t
perspective_4point_transform: function(model, src_x0, src_y0, dst_x0, dst_y0,
src_x1, src_y1, dst_x1, dst_y1,
src_x2, src_y2, dst_x2, dst_y2,
src_x3, src_y3, dst_x3, dst_y3) {
var t1 = src_x0;
var t2 = src_x2;
var t4 = src_y1;
var t5 = t1 * t2 * t4;
var t6 = src_y3;
var t7 = t1 * t6;
var t8 = t2 * t7;
var t9 = src_y2;
var t10 = t1 * t9;
var t11 = src_x1;
var t14 = src_y0;
var t15 = src_x3;
var t16 = t14 * t15;
var t18 = t16 * t11;
var t20 = t15 * t11 * t9;
var t21 = t15 * t4;
var t24 = t15 * t9;
var t25 = t2 * t4;
var t26 = t6 * t2;
var t27 = t6 * t11;
var t28 = t9 * t11;
var t30 = 1.0 / (t21-t24 - t25 + t26 - t27 + t28);
var t32 = t1 * t15;
var t35 = t14 * t11;
var t41 = t4 * t1;
var t42 = t6 * t41;
var t43 = t14 * t2;
var t46 = t16 * t9;
var t48 = t14 * t9 * t11;
var t51 = t4 * t6 * t2;
var t55 = t6 * t14;
var Hr0 = -(t8-t5 + t10 * t11 - t11 * t7 - t16 * t2 + t18 - t20 + t21 * t2) * t30;
var Hr1 = (t5 - t8 - t32 * t4 + t32 * t9 + t18 - t2 * t35 + t27 * t2 - t20) * t30;
var Hr2 = t1;
var Hr3 = (-t9 * t7 + t42 + t43 * t4 - t16 * t4 + t46 - t48 + t27 * t9 - t51) * t30;
var Hr4 = (-t42 + t41 * t9 - t55 * t2 + t46 - t48 + t55 * t11 + t51 - t21 * t9) * t30;
var Hr5 = t14;
var Hr6 = (-t10 + t41 + t43 - t35 + t24 - t21 - t26 + t27) * t30;
var Hr7 = (-t7 + t10 + t16 - t43 + t27 - t28 - t21 + t25) * t30;
t1 = dst_x0;
t2 = dst_x2;
t4 = dst_y1;
t5 = t1 * t2 * t4;
t6 = dst_y3;
t7 = t1 * t6;
t8 = t2 * t7;
t9 = dst_y2;
t10 = t1 * t9;
t11 = dst_x1;
t14 = dst_y0;
t15 = dst_x3;
t16 = t14 * t15;
t18 = t16 * t11;
t20 = t15 * t11 * t9;
t21 = t15 * t4;
t24 = t15 * t9;
t25 = t2 * t4;
t26 = t6 * t2;
t27 = t6 * t11;
t28 = t9 * t11;
t30 = 1.0 / (t21-t24 - t25 + t26 - t27 + t28);
t32 = t1 * t15;
t35 = t14 * t11;
t41 = t4 * t1;
t42 = t6 * t41;
t43 = t14 * t2;
t46 = t16 * t9;
t48 = t14 * t9 * t11;
t51 = t4 * t6 * t2;
t55 = t6 * t14;
var Hl0 = -(t8-t5 + t10 * t11 - t11 * t7 - t16 * t2 + t18 - t20 + t21 * t2) * t30;
var Hl1 = (t5 - t8 - t32 * t4 + t32 * t9 + t18 - t2 * t35 + t27 * t2 - t20) * t30;
var Hl2 = t1;
var Hl3 = (-t9 * t7 + t42 + t43 * t4 - t16 * t4 + t46 - t48 + t27 * t9 - t51) * t30;
var Hl4 = (-t42 + t41 * t9 - t55 * t2 + t46 - t48 + t55 * t11 + t51 - t21 * t9) * t30;
var Hl5 = t14;
var Hl6 = (-t10 + t41 + t43 - t35 + t24 - t21 - t26 + t27) * t30;
var Hl7 = (-t7 + t10 + t16 - t43 + t27 - t28 - t21 + t25) * t30;
// the following code computes R = Hl * inverse Hr
t2 = Hr4-Hr7*Hr5;
t4 = Hr0*Hr4;
t5 = Hr0*Hr5;
t7 = Hr3*Hr1;
t8 = Hr2*Hr3;
t10 = Hr1*Hr6;
var t12 = Hr2*Hr6;
t15 = 1.0 / (t4-t5*Hr7-t7+t8*Hr7+t10*Hr5-t12*Hr4);
t18 = -Hr3+Hr5*Hr6;
var t23 = -Hr3*Hr7+Hr4*Hr6;
t28 = -Hr1+Hr2*Hr7;
var t31 = Hr0-t12;
t35 = Hr0*Hr7-t10;
t41 = -Hr1*Hr5+Hr2*Hr4;
var t44 = t5-t8;
var t47 = t4-t7;
t48 = t2*t15;
var t49 = t28*t15;
var t50 = t41*t15;
var mat = model.data;
mat[0] = Hl0*t48+Hl1*(t18*t15)-Hl2*(t23*t15);
mat[1] = Hl0*t49+Hl1*(t31*t15)-Hl2*(t35*t15);
mat[2] = -Hl0*t50-Hl1*(t44*t15)+Hl2*(t47*t15);
mat[3] = Hl3*t48+Hl4*(t18*t15)-Hl5*(t23*t15);
mat[4] = Hl3*t49+Hl4*(t31*t15)-Hl5*(t35*t15);
mat[5] = -Hl3*t50-Hl4*(t44*t15)+Hl5*(t47*t15);
mat[6] = Hl6*t48+Hl7*(t18*t15)-t23*t15;
mat[7] = Hl6*t49+Hl7*(t31*t15)-t35*t15;
mat[8] = -Hl6*t50-Hl7*(t44*t15)+t47*t15;
},
// The current implementation was derived from *BSD system qsort():
// Copyright (c) 1992, 1993
// The Regents of the University of California. All rights reserved.
qsort: function(array, low, high, cmp) {
var isort_thresh = 7;
var t,ta,tb,tc;
var sp = 0,left=0,right=0,i=0,n=0,m=0,ptr=0,ptr2=0,d=0;
var left0=0,left1=0,right0=0,right1=0,pivot=0,a=0,b=0,c=0,swap_cnt=0;
var stack = qsort_stack;
if( (high-low+1) <= 1 ) return;
stack[0] = low;
stack[1] = high;
while( sp >= 0 ) {
left = stack[sp<<1];
right = stack[(sp<<1)+1];
sp--;
for(;;) {
n = (right - left) + 1;
if( n <= isort_thresh ) {
//insert_sort:
for( ptr = left + 1; ptr <= right; ptr++ ) {
for( ptr2 = ptr; ptr2 > left && cmp(array[ptr2],array[ptr2-1]); ptr2--) {
t = array[ptr2];
array[ptr2] = array[ptr2-1];
array[ptr2-1] = t;
}
}
break;
} else {
swap_cnt = 0;
left0 = left;
right0 = right;
pivot = left + (n>>1);
if( n > 40 ) {
d = n >> 3;
a = left, b = left + d, c = left + (d<<1);
ta = array[a],tb = array[b],tc = array[c];
left = cmp(ta, tb) ? (cmp(tb, tc) ? b : (cmp(ta, tc) ? c : a))
: (cmp(tc, tb) ? b : (cmp(ta, tc) ? a : c));
a = pivot - d, b = pivot, c = pivot + d;
ta = array[a],tb = array[b],tc = array[c];
pivot = cmp(ta, tb) ? (cmp(tb, tc) ? b : (cmp(ta, tc) ? c : a))
: (cmp(tc, tb) ? b : (cmp(ta, tc) ? a : c));
a = right - (d<<1), b = right - d, c = right;
ta = array[a],tb = array[b],tc = array[c];
right = cmp(ta, tb) ? (cmp(tb, tc) ? b : (cmp(ta, tc) ? c : a))
: (cmp(tc, tb) ? b : (cmp(ta, tc) ? a : c));
}
a = left, b = pivot, c = right;
ta = array[a],tb = array[b],tc = array[c];
pivot = cmp(ta, tb) ? (cmp(tb, tc) ? b : (cmp(ta, tc) ? c : a))
: (cmp(tc, tb) ? b : (cmp(ta, tc) ? a : c));
if( pivot != left0 ) {
t = array[pivot];
array[pivot] = array[left0];
array[left0] = t;
pivot = left0;
}
left = left1 = left0 + 1;
right = right1 = right0;
ta = array[pivot];
for(;;) {
while( left <= right && !cmp(ta, array[left]) ) {
if( !cmp(array[left], ta) ) {
if( left > left1 ) {
t = array[left1];
array[left1] = array[left];
array[left] = t;
}
swap_cnt = 1;
left1++;
}
left++;
}
while( left <= right && !cmp(array[right], ta) ) {
if( !cmp(ta, array[right]) ) {
if( right < right1 ) {
t = array[right1];
array[right1] = array[right];
array[right] = t;
}
swap_cnt = 1;
right1--;
}
right--;
}
if( left > right ) break;
t = array[left];
array[left] = array[right];
array[right] = t;
swap_cnt = 1;
left++;
right--;
}
if( swap_cnt == 0 ) {
left = left0, right = right0;
//goto insert_sort;
for( ptr = left + 1; ptr <= right; ptr++ ) {
for( ptr2 = ptr; ptr2 > left && cmp(array[ptr2],array[ptr2-1]); ptr2--) {
t = array[ptr2];
array[ptr2] = array[ptr2-1];
array[ptr2-1] = t;
}
}
break;
}
n = Math.min( (left1 - left0), (left - left1) );
m = (left-n)|0;
for( i = 0; i < n; ++i,++m ) {
t = array[left0+i];
array[left0+i] = array[m];
array[m] = t;
}
n = Math.min( (right0 - right1), (right1 - right) );
m = (right0-n+1)|0;
for( i = 0; i < n; ++i,++m ) {
t = array[left+i];
array[left+i] = array[m];
array[m] = t;
}
n = (left - left1);
m = (right1 - right);
if( n > 1 ) {
if( m > 1 ) {
if( n > m ) {
++sp;
stack[sp<<1] = left0;
stack[(sp<<1)+1] = left0 + n - 1;
left = right0 - m + 1, right = right0;
} else {
++sp;
stack[sp<<1] = right0 - m + 1;
stack[(sp<<1)+1] = right0;
left = left0, right = left0 + n - 1;
}
} else {
left = left0, right = left0 + n - 1;
}
}
else if( m > 1 )
left = right0 - m + 1, right = right0;
else
break;
}
}
}
},
median: function(array, low, high) {
var w;
var middle=0,ll=0,hh=0,median=(low+high)>>1;
for (;;) {
if (high <= low) return array[median];
if (high == (low + 1)) {
if (array[low] > array[high]) {
w = array[low];
array[low] = array[high];
array[high] = w;
}
return array[median];
}
middle = ((low + high) >> 1);
if (array[middle] > array[high]) {
w = array[middle];
array[middle] = array[high];
array[high] = w;
}
if (array[low] > array[high]) {
w = array[low];
array[low] = array[high];
array[high] = w;
}
if (array[middle] > array[low]) {
w = array[middle];
array[middle] = array[low];
array[low] = w;
}
ll = (low + 1);
w = array[middle];
array[middle] = array[ll];
array[ll] = w;
hh = high;
for (;;) {
do ++ll; while (array[low] > array[ll]);
do --hh; while (array[hh] > array[low]);
if (hh < ll) break;
w = array[ll];
array[ll] = array[hh];
array[hh] = w;
}
w = array[low];
array[low] = array[hh];
array[hh] = w;
if (hh <= median)
low = ll;
else if (hh >= median)
high = (hh - 1);
}
return 0;
}
};
})();
global.math = math;
})(jsfeat);
/**
* @author Eugene Zatepyakin / http://inspirit.ru/
*
*/
(function(global) {
"use strict";
//
var matmath = (function() {
return {
identity: function(M, value) {
if (typeof value === "undefined") { value=1; }
var src=M.data;
var rows=M.rows, cols=M.cols, cols_1=(cols+1)|0;
var len = rows * cols;
var k = len;
while(--len >= 0) src[len] = 0.0;
len = k;
k = 0;
while(k < len) {
src[k] = value;
k = k + cols_1;
}
},
transpose: function(At, A) {
var i=0,j=0,nrows=A.rows,ncols=A.cols;
var Ai=0,Ati=0,pAt=0;
var ad=A.data,atd=At.data;
for (; i < nrows; Ati += 1, Ai += ncols, i++) {
pAt = Ati;
for (j = 0; j < ncols; pAt += nrows, j++) atd[pAt] = ad[Ai+j];
}
},
// C = A * B
multiply: function(C, A, B) {
var i=0,j=0,k=0;
var Ap=0,pA=0,pB=0,p_B=0,Cp=0;
var ncols=A.cols,nrows=A.rows,mcols=B.cols;
var ad=A.data,bd=B.data,cd=C.data;
var sum=0.0;
for (; i < nrows; Ap += ncols, i++) {
for (p_B = 0, j = 0; j < mcols; Cp++, p_B++, j++) {
pB = p_B;
pA = Ap;
sum = 0.0;
for (k = 0; k < ncols; pA++, pB += mcols, k++) {
sum += ad[pA] * bd[pB];
}
cd[Cp] = sum;
}
}
},
// C = A * B'
multiply_ABt: function(C, A, B) {
var i=0,j=0,k=0;
var Ap=0,pA=0,pB=0,Cp=0;
var ncols=A.cols,nrows=A.rows,mrows=B.rows;
var ad=A.data,bd=B.data,cd=C.data;
var sum=0.0;
for (; i < nrows; Ap += ncols, i++) {
for (pB = 0, j = 0; j < mrows; Cp++, j++) {
pA = Ap;
sum = 0.0;
for (k = 0; k < ncols; pA++, pB++, k++) {
sum += ad[pA] * bd[pB];
}
cd[Cp] = sum;
}
}
},
// C = A' * B
multiply_AtB: function(C, A, B) {
var i=0,j=0,k=0;
var Ap=0,pA=0,pB=0,p_B=0,Cp=0;
var ncols=A.cols,nrows=A.rows,mcols=B.cols;
var ad=A.data,bd=B.data,cd=C.data;
var sum=0.0;
for (; i < ncols; Ap++, i++) {
for (p_B = 0, j = 0; j < mcols; Cp++, p_B++, j++) {
pB = p_B;
pA = Ap;
sum = 0.0;
for (k = 0; k < nrows; pA += ncols, pB += mcols, k++) {
sum += ad[pA] * bd[pB];
}
cd[Cp] = sum;
}
}
},
// C = A * A'
multiply_AAt: function(C, A) {
var i=0,j=0,k=0;
var pCdiag=0,p_A=0,pA=0,pB=0,pC=0,pCt=0;
var ncols=A.cols,nrows=A.rows;
var ad=A.data,cd=C.data;
var sum=0.0;
for (; i < nrows; pCdiag += nrows + 1, p_A = pA, i++) {
pC = pCdiag;
pCt = pCdiag;
pB = p_A;
for (j = i; j < nrows; pC++, pCt += nrows, j++) {
pA = p_A;
sum = 0.0;
for (k = 0; k < ncols; k++) {
sum += ad[pA++] * ad[pB++];
}
cd[pC] = sum
cd[pCt] = sum;
}
}
},
// C = A' * A
multiply_AtA: function(C, A) {
var i=0,j=0,k=0;
var p_A=0,pA=0,pB=0,p_C=0,pC=0,p_CC=0;
var ncols=A.cols,nrows=A.rows;
var ad=A.data,cd=C.data;
var sum=0.0;
for (; i < ncols; p_C += ncols, i++) {
p_A = i;
p_CC = p_C + i;
pC = p_CC;
for (j = i; j < ncols; pC++, p_CC += ncols, j++) {
pA = p_A;
pB = j;
sum = 0.0;
for (k = 0; k < nrows; pA += ncols, pB += ncols, k++) {
sum += ad[pA] * ad[pB];
}
cd[pC] = sum
cd[p_CC] = sum;
}
}
},
// various small matrix operations
identity_3x3: function(M, value) {
if (typeof value === "undefined") { value=1; }
var dt=M.data;
dt[0] = dt[4] = dt[8] = value;
dt[1] = dt[2] = dt[3] = 0;
dt[5] = dt[6] = dt[7] = 0;
},
invert_3x3: function(from, to) {
var A = from.data, invA = to.data;
var t1 = A[4];
var t2 = A[8];
var t4 = A[5];
var t5 = A[7];
var t8 = A[0];
var t9 = t8*t1;
var t11 = t8*t4;
var t13 = A[3];
var t14 = A[1];
var t15 = t13*t14;
var t17 = A[2];
var t18 = t13*t17;
var t20 = A[6];
var t21 = t20*t14;
var t23 = t20*t17;
var t26 = 1.0/(t9*t2-t11*t5-t15*t2+t18*t5+t21*t4-t23*t1);
invA[0] = (t1*t2-t4*t5)*t26;
invA[1] = -(t14*t2-t17*t5)*t26;
invA[2] = -(-t14*t4+t17*t1)*t26;
invA[3] = -(t13*t2-t4*t20)*t26;
invA[4] = (t8*t2-t23)*t26;
invA[5] = -(t11-t18)*t26;
invA[6] = -(-t13*t5+t1*t20)*t26;
invA[7] = -(t8*t5-t21)*t26;
invA[8] = (t9-t15)*t26;
},
// C = A * B
multiply_3x3: function(C, A, B) {
var Cd=C.data, Ad=A.data, Bd=B.data;
var m1_0 = Ad[0], m1_1 = Ad[1], m1_2 = Ad[2];
var m1_3 = Ad[3], m1_4 = Ad[4], m1_5 = Ad[5];
var m1_6 = Ad[6], m1_7 = Ad[7], m1_8 = Ad[8];
var m2_0 = Bd[0], m2_1 = Bd[1], m2_2 = Bd[2];
var m2_3 = Bd[3], m2_4 = Bd[4], m2_5 = Bd[5];
var m2_6 = Bd[6], m2_7 = Bd[7], m2_8 = Bd[8];
Cd[0] = m1_0 * m2_0 + m1_1 * m2_3 + m1_2 * m2_6;
Cd[1] = m1_0 * m2_1 + m1_1 * m2_4 + m1_2 * m2_7;
Cd[2] = m1_0 * m2_2 + m1_1 * m2_5 + m1_2 * m2_8;
Cd[3] = m1_3 * m2_0 + m1_4 * m2_3 + m1_5 * m2_6;
Cd[4] = m1_3 * m2_1 + m1_4 * m2_4 + m1_5 * m2_7;
Cd[5] = m1_3 * m2_2 + m1_4 * m2_5 + m1_5 * m2_8;
Cd[6] = m1_6 * m2_0 + m1_7 * m2_3 + m1_8 * m2_6;
Cd[7] = m1_6 * m2_1 + m1_7 * m2_4 + m1_8 * m2_7;
Cd[8] = m1_6 * m2_2 + m1_7 * m2_5 + m1_8 * m2_8;
},
mat3x3_determinant: function(M) {
var md=M.data;
return md[0] * md[4] * md[8] -
md[0] * md[5] * md[7] -
md[3] * md[1] * md[8] +
md[3] * md[2] * md[7] +
md[6] * md[1] * md[5] -
md[6] * md[2] * md[4];
},
determinant_3x3: function(M11, M12, M13,
M21, M22, M23,
M31, M32, M33) {
return M11 * M22 * M33 - M11 * M23 * M32 -
M21 * M12 * M33 + M21 * M13 * M32 +
M31 * M12 * M23 - M31 * M13 * M22;
}
};
})();
global.matmath = matmath;
})(jsfeat);
/**
* @author Eugene Zatepyakin / http://inspirit.ru/
*
*/
(function(global) {
"use strict";
//
var linalg = (function() {
var swap = function(A, i0, i1, t) {
t = A[i0];
A[i0] = A[i1];
A[i1] = t;
}
var hypot = function(a, b) {
a = Math.abs(a);
b = Math.abs(b);
if( a > b ) {
b /= a;
return a*Math.sqrt(1.0 + b*b);
}
if( b > 0 ) {
a /= b;
return b*Math.sqrt(1.0 + a*a);
}
return 0.0;
}
var JacobiImpl = function(A, astep, W, V, vstep, n) {
var eps = jsfeat.EPSILON;
var i=0,j=0,k=0,m=0,l=0,idx=0,_in=0,_in2=0;
var iters=0,max_iter=n*n*30;
var mv=0.0,val=0.0,p=0.0,y=0.0,t=0.0,s=0.0,c=0.0,a0=0.0,b0=0.0;
var indR_buff = jsfeat.cache.get_buffer(n<<2);
var indC_buff = jsfeat.cache.get_buffer(n<<2);
var indR = indR_buff.i32;
var indC = indC_buff.i32;
if(V) {
for(; i < n; i++) {
k = i*vstep;
for(j = 0; j < n; j++) {
V[k + j] = 0.0;
}
V[k + i] = 1.0;
}
}
for(k = 0; k < n; k++) {
W[k] = A[(astep + 1)*k];
if(k < n - 1) {
for(m = k+1, mv = Math.abs(A[astep*k + m]), i = k+2; i < n; i++) {
val = Math.abs(A[astep*k+i]);
if(mv < val)
mv = val, m = i;
}
indR[k] = m;
}
if(k > 0) {
for(m = 0, mv = Math.abs(A[k]), i = 1; i < k; i++) {
val = Math.abs(A[astep*i+k]);
if(mv < val)
mv = val, m = i;
}
indC[k] = m;
}
}
if(n > 1) for( ; iters < max_iter; iters++) {
// find index (k,l) of pivot p
for(k = 0, mv = Math.abs(A[indR[0]]), i = 1; i < n-1; i++) {
val = Math.abs(A[astep*i + indR[i]]);
if( mv < val )
mv = val, k = i;
}
l = indR[k];
for(i = 1; i < n; i++) {
val = Math.abs(A[astep*indC[i] + i]);
if( mv < val )
mv = val, k = indC[i], l = i;
}
p = A[astep*k + l];
if(Math.abs(p) <= eps) break;
y = (W[l] - W[k])*0.5;
t = Math.abs(y) + hypot(p, y);
s = hypot(p, t);
c = t/s;
s = p/s; t = (p/t)*p;
if(y < 0)
s = -s, t = -t;
A[astep*k + l] = 0;
W[k] -= t;
W[l] += t;
// rotate rows and columns k and l
for (i = 0; i < k; i++) {
_in = (astep * i + k);
_in2 = (astep * i + l);
a0 = A[_in];
b0 = A[_in2];
A[_in] = a0 * c - b0 * s;
A[_in2] = a0 * s + b0 * c;
}
for (i = (k + 1); i < l; i++) {
_in = (astep * k + i);
_in2 = (astep * i + l);
a0 = A[_in];
b0 = A[_in2];
A[_in] = a0 * c - b0 * s;
A[_in2] = a0 * s + b0 * c;
}
i = l + 1;
_in = (astep * k + i);
_in2 = (astep * l + i);
for (; i < n; i++, _in++, _in2++) {
a0 = A[_in];
b0 = A[_in2];
A[_in] = a0 * c - b0 * s;
A[_in2] = a0 * s + b0 * c;
}
// rotate eigenvectors
if (V) {
_in = vstep * k;
_in2 = vstep * l;
for (i = 0; i < n; i++, _in++, _in2++) {
a0 = V[_in];
b0 = V[_in2];
V[_in] = a0 * c - b0 * s;
V[_in2] = a0 * s + b0 * c;
}
}
for(j = 0; j < 2; j++) {
idx = j == 0 ? k : l;
if(idx < n - 1) {
for(m = idx+1, mv = Math.abs(A[astep*idx + m]), i = idx+2; i < n; i++) {
val = Math.abs(A[astep*idx+i]);
if( mv < val )
mv = val, m = i;
}
indR[idx] = m;
}
if(idx > 0) {
for(m = 0, mv = Math.abs(A[idx]), i = 1; i < idx; i++) {
val = Math.abs(A[astep*i+idx]);
if( mv < val )
mv = val, m = i;
}
indC[idx] = m;
}
}
}
// sort eigenvalues & eigenvectors
for(k = 0; k < n-1; k++) {
m = k;
for(i = k+1; i < n; i++) {
if(W[m] < W[i])
m = i;
}
if(k != m) {
swap(W, m, k, mv);
if(V) {
for(i = 0; i < n; i++) {
swap(V, vstep*m + i, vstep*k + i, mv);
}
}
}
}
jsfeat.cache.put_buffer(indR_buff);
jsfeat.cache.put_buffer(indC_buff);
}
var JacobiSVDImpl = function(At, astep, _W, Vt, vstep, m, n, n1) {
var eps = jsfeat.EPSILON * 2.0;
var minval = jsfeat.FLT_MIN;
var i=0,j=0,k=0,iter=0,max_iter=Math.max(m, 30);
var Ai=0,Aj=0,Vi=0,Vj=0,changed=0;
var c=0.0, s=0.0, t=0.0;
var t0=0.0,t1=0.0,sd=0.0,beta=0.0,gamma=0.0,delta=0.0,a=0.0,p=0.0,b=0.0;
var seed = 0x1234;
var val=0.0,val0=0.0,asum=0.0;
var W_buff = jsfeat.cache.get_buffer(n<<3);
var W = W_buff.f64;
for(; i < n; i++) {
for(k = 0, sd = 0; k < m; k++) {
t = At[i*astep + k];
sd += t*t;
}
W[i] = sd;
if(Vt) {
for(k = 0; k < n; k++) {
Vt[i*vstep + k] = 0;
}
Vt[i*vstep + i] = 1;
}
}
for(; iter < max_iter; iter++) {
changed = 0;
for(i = 0; i < n-1; i++) {
for(j = i+1; j < n; j++) {
Ai = (i*astep)|0, Aj = (j*astep)|0;
a = W[i], p = 0, b = W[j];
k = 2;
p += At[Ai]*At[Aj];
p += At[Ai+1]*At[Aj+1];
for(; k < m; k++)
p += At[Ai+k]*At[Aj+k];
if(Math.abs(p) <= eps*Math.sqrt(a*b)) continue;
p *= 2.0;
beta = a - b, gamma = hypot(p, beta);
if( beta < 0 ) {
delta = (gamma - beta)*0.5;
s = Math.sqrt(delta/gamma);
c = (p/(gamma*s*2.0));
} else {
c = Math.sqrt((gamma + beta)/(gamma*2.0));
s = (p/(gamma*c*2.0));
}
a=0.0, b=0.0;
k = 2; // unroll
t0 = c*At[Ai] + s*At[Aj];
t1 = -s*At[Ai] + c*At[Aj];
At[Ai] = t0; At[Aj] = t1;
a += t0*t0; b += t1*t1;
t0 = c*At[Ai+1] + s*At[Aj+1];
t1 = -s*At[Ai+1] + c*At[Aj+1];
At[Ai+1] = t0; At[Aj+1] = t1;
a += t0*t0; b += t1*t1;
for( ; k < m; k++ )
{
t0 = c*At[Ai+k] + s*At[Aj+k];
t1 = -s*At[Ai+k] + c*At[Aj+k];
At[Ai+k] = t0; At[Aj+k] = t1;
a += t0*t0; b += t1*t1;
}
W[i] = a; W[j] = b;
changed = 1;
if(Vt) {
Vi = (i*vstep)|0, Vj = (j*vstep)|0;
k = 2;
t0 = c*Vt[Vi] + s*Vt[Vj];
t1 = -s*Vt[Vi] + c*Vt[Vj];
Vt[Vi] = t0; Vt[Vj] = t1;
t0 = c*Vt[Vi+1] + s*Vt[Vj+1];
t1 = -s*Vt[Vi+1] + c*Vt[Vj+1];
Vt[Vi+1] = t0; Vt[Vj+1] = t1;
for(; k < n; k++) {
t0 = c*Vt[Vi+k] + s*Vt[Vj+k];
t1 = -s*Vt[Vi+k] + c*Vt[Vj+k];
Vt[Vi+k] = t0; Vt[Vj+k] = t1;
}
}
}
}
if(changed == 0) break;
}
for(i = 0; i < n; i++) {
for(k = 0, sd = 0; k < m; k++) {
t = At[i*astep + k];
sd += t*t;
}
W[i] = Math.sqrt(sd);
}
for(i = 0; i < n-1; i++) {
j = i;
for(k = i+1; k < n; k++) {
if(W[j] < W[k])
j = k;
}
if(i != j) {
swap(W, i, j, sd);
if(Vt) {
for(k = 0; k < m; k++) {
swap(At, i*astep + k, j*astep + k, t);
}
for(k = 0; k < n; k++) {
swap(Vt, i*vstep + k, j*vstep + k, t);
}
}
}
}
for(i = 0; i < n; i++) {
_W[i] = W[i];
}
if(!Vt) {
jsfeat.cache.put_buffer(W_buff);
return;
}
for(i = 0; i < n1; i++) {
sd = i < n ? W[i] : 0;
while(sd <= minval) {
// if we got a zero singular value, then in order to get the corresponding left singular vector
// we generate a random vector, project it to the previously computed left singular vectors,
// subtract the projection and normalize the difference.
val0 = (1.0/m);
for(k = 0; k < m; k++) {
seed = (seed * 214013 + 2531011);
val = (((seed >> 16) & 0x7fff) & 256) != 0 ? val0 : -val0;
At[i*astep + k] = val;
}
for(iter = 0; iter < 2; iter++) {
for(j = 0; j < i; j++) {
sd = 0;
for(k = 0; k < m; k++) {
sd += At[i*astep + k]*At[j*astep + k];
}
asum = 0.0;
for(k = 0; k < m; k++) {
t = (At[i*astep + k] - sd*At[j*astep + k]);
At[i*astep + k] = t;
asum += Math.abs(t);
}
asum = asum ? 1.0/asum : 0;
for(k = 0; k < m; k++) {
At[i*astep + k] *= asum;
}
}
}
sd = 0;
for(k = 0; k < m; k++) {
t = At[i*astep + k];
sd += t*t;
}
sd = Math.sqrt(sd);
}
s = (1.0/sd);
for(k = 0; k < m; k++) {
At[i*astep + k] *= s;
}
}
jsfeat.cache.put_buffer(W_buff);
}
return {
lu_solve: function(A, B) {
var i=0,j=0,k=0,p=1,astep=A.cols;
var ad=A.data, bd=B.data;
var t,alpha,d,s;
for(i = 0; i < astep; i++) {
k = i;
for(j = i+1; j < astep; j++) {
if(Math.abs(ad[j*astep + i]) > Math.abs(ad[k*astep+i])) {
k = j;
}
}
if(Math.abs(ad[k*astep+i]) < jsfeat.EPSILON) {
return 0; // FAILED
}
if(k != i) {
for(j = i; j < astep; j++ ) {
swap(ad, i*astep+j, k*astep+j, t);
}
swap(bd, i, k, t);
p = -p;
}
d = -1.0/ad[i*astep+i];
for(j = i+1; j < astep; j++) {
alpha = ad[j*astep+i]*d;
for(k = i+1; k < astep; k++) {
ad[j*astep+k] += alpha*ad[i*astep+k];
}
bd[j] += alpha*bd[i];
}
ad[i*astep+i] = -d;
}
for(i = astep-1; i >= 0; i--) {
s = bd[i];
for(k = i+1; k < astep; k++) {
s -= ad[i*astep+k]*bd[k];
}
bd[i] = s*ad[i*astep+i];
}
return 1; // OK
},
cholesky_solve: function(A, B) {
var col=0,row=0,col2=0,cs=0,rs=0,i=0,j=0;
var size = A.cols;
var ad=A.data, bd=B.data;
var val,inv_diag;
for (col = 0; col < size; col++) {
inv_diag = 1.0;
cs = (col * size);
rs = cs;
for (row = col; row < size; row++)
{
// correct for the parts of cholesky already computed
val = ad[(rs+col)];
for (col2 = 0; col2 < col; col2++) {
val -= ad[(col2*size+col)] * ad[(rs+col2)];
}
if (row == col) {
// this is the diagonal element so don't divide
ad[(rs+col)] = val;
if(val == 0) {
return 0;
}
inv_diag = 1.0 / val;
} else {
// cache the value without division in the upper half
ad[(cs+row)] = val;
// divide my the diagonal element for all others
ad[(rs+col)] = val * inv_diag;
}
rs = (rs + size);
}
}
// first backsub through L
cs = 0;
for (i = 0; i < size; i++) {
val = bd[i];
for (j = 0; j < i; j++) {
val -= ad[(cs+j)] * bd[j];
}
bd[i] = val;
cs = (cs + size);
}
// backsub through diagonal
cs = 0;
for (i = 0; i < size; i++) {
bd[i] /= ad[(cs + i)];
cs = (cs + size);
}
// backsub through L Transpose
i = (size-1);
for (; i >= 0; i--) {
val = bd[i];
j = (i + 1);
cs = (j * size);
for (; j < size; j++) {
val -= ad[(cs + i)] * bd[j];
cs = (cs + size);
}
bd[i] = val;
}
return 1;
},
svd_decompose: function(A, W, U, V, options) {
if (typeof options === "undefined") { options = 0; };
var at=0,i=0,j=0,_m=A.rows,_n=A.cols,m=_m,n=_n;
var dt = A.type | jsfeat.C1_t; // we only work with single channel
if(m < n) {
at = 1;
i = m;
m = n;
n = i;
}
var a_buff = jsfeat.cache.get_buffer((m*m)<<3);
var w_buff = jsfeat.cache.get_buffer(n<<3);
var v_buff = jsfeat.cache.get_buffer((n*n)<<3);
var a_mt = new jsfeat.matrix_t(m, m, dt, a_buff.data);
var w_mt = new jsfeat.matrix_t(1, n, dt, w_buff.data);
var v_mt = new jsfeat.matrix_t(n, n, dt, v_buff.data);
if(at == 0) {
// transpose
jsfeat.matmath.transpose(a_mt, A);
} else {
for(i = 0; i < _n*_m; i++) {
a_mt.data[i] = A.data[i];
}
for(; i < n*m; i++) {
a_mt.data[i] = 0;
}
}
JacobiSVDImpl(a_mt.data, m, w_mt.data, v_mt.data, n, m, n, m);
if(W) {
for(i=0; i < n; i++) {
W.data[i] = w_mt.data[i];
}
for(; i < _n; i++) {
W.data[i] = 0;
}
}
if (at == 0) {
if(U && (options & jsfeat.SVD_U_T)) {
i = m*m;
while(--i >= 0) {
U.data[i] = a_mt.data[i];
}
} else if(U) {
jsfeat.matmath.transpose(U, a_mt);
}
if(V && (options & jsfeat.SVD_V_T)) {
i = n*n;
while(--i >= 0) {
V.data[i] = v_mt.data[i];
}
} else if(V) {
jsfeat.matmath.transpose(V, v_mt);
}
} else {
if(U && (options & jsfeat.SVD_U_T)) {
i = n*n;
while(--i >= 0) {
U.data[i] = v_mt.data[i];
}
} else if(U) {
jsfeat.matmath.transpose(U, v_mt);
}
if(V && (options & jsfeat.SVD_V_T)) {
i = m*m;
while(--i >= 0) {
V.data[i] = a_mt.data[i];
}
} else if(V) {
jsfeat.matmath.transpose(V, a_mt);
}
}
jsfeat.cache.put_buffer(a_buff);
jsfeat.cache.put_buffer(w_buff);
jsfeat.cache.put_buffer(v_buff);
},
svd_solve: function(A, X, B) {
var i=0,j=0,k=0;
var pu=0,pv=0;
var nrows=A.rows,ncols=A.cols;
var sum=0.0,xsum=0.0,tol=0.0;
var dt = A.type | jsfeat.C1_t;
var u_buff = jsfeat.cache.get_buffer((nrows*nrows)<<3);
var w_buff = jsfeat.cache.get_buffer(ncols<<3);
var v_buff = jsfeat.cache.get_buffer((ncols*ncols)<<3);
var u_mt = new jsfeat.matrix_t(nrows, nrows, dt, u_buff.data);
var w_mt = new jsfeat.matrix_t(1, ncols, dt, w_buff.data);
var v_mt = new jsfeat.matrix_t(ncols, ncols, dt, v_buff.data);
var bd = B.data, ud = u_mt.data, wd = w_mt.data, vd = v_mt.data;
this.svd_decompose(A, w_mt, u_mt, v_mt, 0);
tol = jsfeat.EPSILON * wd[0] * ncols;
for (; i < ncols; i++, pv += ncols) {
xsum = 0.0;
for(j = 0; j < ncols; j++) {
if(wd[j] > tol) {
for(k = 0, sum = 0.0, pu = 0; k < nrows; k++, pu += ncols) {
sum += ud[pu + j] * bd[k];
}
xsum += sum * vd[pv + j] / wd[j];
}
}
X.data[i] = xsum;
}
jsfeat.cache.put_buffer(u_buff);
jsfeat.cache.put_buffer(w_buff);
jsfeat.cache.put_buffer(v_buff);
},
svd_invert: function(Ai, A) {
var i=0,j=0,k=0;
var pu=0,pv=0,pa=0;
var nrows=A.rows,ncols=A.cols;
var sum=0.0,tol=0.0;
var dt = A.type | jsfeat.C1_t;
var u_buff = jsfeat.cache.get_buffer((nrows*nrows)<<3);
var w_buff = jsfeat.cache.get_buffer(ncols<<3);
var v_buff = jsfeat.cache.get_buffer((ncols*ncols)<<3);
var u_mt = new jsfeat.matrix_t(nrows, nrows, dt, u_buff.data);
var w_mt = new jsfeat.matrix_t(1, ncols, dt, w_buff.data);
var v_mt = new jsfeat.matrix_t(ncols, ncols, dt, v_buff.data);
var id = Ai.data, ud = u_mt.data, wd = w_mt.data, vd = v_mt.data;
this.svd_decompose(A, w_mt, u_mt, v_mt, 0);
tol = jsfeat.EPSILON * wd[0] * ncols;
for (; i < ncols; i++, pv += ncols) {
for (j = 0, pu = 0; j < nrows; j++, pa++) {
for (k = 0, sum = 0.0; k < ncols; k++, pu++) {
if (wd[k] > tol) sum += vd[pv + k] * ud[pu] / wd[k];
}
id[pa] = sum;
}
}
jsfeat.cache.put_buffer(u_buff);
jsfeat.cache.put_buffer(w_buff);
jsfeat.cache.put_buffer(v_buff);
},
eigenVV: function(A, vects, vals) {
var n=A.cols,i=n*n;
var dt = A.type | jsfeat.C1_t;
var a_buff = jsfeat.cache.get_buffer((n*n)<<3);
var w_buff = jsfeat.cache.get_buffer(n<<3);
var a_mt = new jsfeat.matrix_t(n, n, dt, a_buff.data);
var w_mt = new jsfeat.matrix_t(1, n, dt, w_buff.data);
while(--i >= 0) {
a_mt.data[i] = A.data[i];
}
JacobiImpl(a_mt.data, n, w_mt.data, vects ? vects.data : null, n, n);
if(vals) {
while(--n >= 0) {
vals.data[n] = w_mt.data[n];
}
}
jsfeat.cache.put_buffer(a_buff);
jsfeat.cache.put_buffer(w_buff);
}
};
})();
global.linalg = linalg;
})(jsfeat);
/**
* @author Eugene Zatepyakin / http://inspirit.ru/
*
*/
(function(global) {
"use strict";
//
var motion_model = (function() {
var sqr = function(x) {
return x*x;
}
// does isotropic normalization
var iso_normalize_points = function(from, to, T0, T1, count) {
var i=0;
var cx0=0.0, cy0=0.0, d0=0.0, s0=0.0;
var cx1=0.0, cy1=0.0, d1=0.0, s1=0.0;
var dx=0.0,dy=0.0;
for (; i < count; ++i) {
cx0 += from[i].x;
cy0 += from[i].y;
cx1 += to[i].x;
cy1 += to[i].y;
}
cx0 /= count; cy0 /= count;
cx1 /= count; cy1 /= count;
for (i = 0; i < count; ++i) {
dx = from[i].x - cx0;
dy = from[i].y - cy0;
d0 += Math.sqrt(dx*dx + dy*dy);
dx = to[i].x - cx1;
dy = to[i].y - cy1;
d1 += Math.sqrt(dx*dx + dy*dy);
}
d0 /= count; d1 /= count;
s0 = Math.SQRT2 / d0; s1 = Math.SQRT2 / d1;
T0[0] = T0[4] = s0;
T0[2] = -cx0*s0;
T0[5] = -cy0*s0;
T0[1] = T0[3] = T0[6] = T0[7] = 0.0;
T0[8] = 1.0;
T1[0] = T1[4] = s1;
T1[2] = -cx1*s1;
T1[5] = -cy1*s1;
T1[1] = T1[3] = T1[6] = T1[7] = 0.0;
T1[8] = 1.0;
}
var have_collinear_points = function(points, count) {
var j=0,k=0,i=(count-1)|0;
var dx1=0.0,dy1=0.0,dx2=0.0,dy2=0.0;
// check that the i-th selected point does not belong
// to a line connecting some previously selected points
for(; j < i; ++j) {
dx1 = points[j].x - points[i].x;
dy1 = points[j].y - points[i].y;
for(k = 0; k < j; ++k) {
dx2 = points[k].x - points[i].x;
dy2 = points[k].y - points[i].y;
if( Math.abs(dx2*dy1 - dy2*dx1) <= jsfeat.EPSILON*(Math.abs(dx1) + Math.abs(dy1) + Math.abs(dx2) + Math.abs(dy2)))
return true;
}
}
return false;
}
var T0 = new jsfeat.matrix_t(3, 3, jsfeat.F32_t|jsfeat.C1_t);
var T1 = new jsfeat.matrix_t(3, 3, jsfeat.F32_t|jsfeat.C1_t);
var AtA = new jsfeat.matrix_t(6, 6, jsfeat.F32_t|jsfeat.C1_t);
var AtB = new jsfeat.matrix_t(6, 1, jsfeat.F32_t|jsfeat.C1_t);
var affine2d = (function () {
function affine2d() {
// empty constructor
}
affine2d.prototype.run = function(from, to, model, count) {
var i=0,j=0;
var dt=model.type|jsfeat.C1_t;
var md=model.data, t0d=T0.data, t1d=T1.data;
var pt0,pt1,px=0.0,py=0.0;
iso_normalize_points(from, to, t0d, t1d, count);
var a_buff = jsfeat.cache.get_buffer((2*count*6)<<3);
var b_buff = jsfeat.cache.get_buffer((2*count)<<3);
var a_mt = new jsfeat.matrix_t(6, 2*count, dt, a_buff.data);
var b_mt = new jsfeat.matrix_t(1, 2*count, dt, b_buff.data);
var ad=a_mt.data, bd=b_mt.data;
for (; i < count; ++i) {
pt0 = from[i];
pt1 = to[i];
px = t0d[0]*pt0.x + t0d[1]*pt0.y + t0d[2];
py = t0d[3]*pt0.x + t0d[4]*pt0.y + t0d[5];
j = i*2*6;
ad[j]=px, ad[j+1]=py, ad[j+2]=1.0, ad[j+3]=0.0, ad[j+4]=0.0, ad[j+5]=0.0;
j += 6;
ad[j]=0.0, ad[j+1]=0.0, ad[j+2]=0.0, ad[j+3]=px, ad[j+4]=py, ad[j+5]=1.0;
bd[i<<1] = t1d[0]*pt1.x + t1d[1]*pt1.y + t1d[2];
bd[(i<<1)+1] = t1d[3]*pt1.x + t1d[4]*pt1.y + t1d[5];
}
jsfeat.matmath.multiply_AtA(AtA, a_mt);
jsfeat.matmath.multiply_AtB(AtB, a_mt, b_mt);
jsfeat.linalg.lu_solve(AtA, AtB);
md[0] = AtB.data[0], md[1]=AtB.data[1], md[2]=AtB.data[2];
md[3] = AtB.data[3], md[4]=AtB.data[4], md[5]=AtB.data[5];
md[6] = 0.0, md[7] = 0.0, md[8] = 1.0; // fill last row
// denormalize
jsfeat.matmath.invert_3x3(T1, T1);
jsfeat.matmath.multiply_3x3(model, T1, model);
jsfeat.matmath.multiply_3x3(model, model, T0);
// free buffer
jsfeat.cache.put_buffer(a_buff);
jsfeat.cache.put_buffer(b_buff);
return 1;
}
affine2d.prototype.error = function(from, to, model, err, count) {
var i=0;
var pt0,pt1;
var m=model.data;
for (; i < count; ++i) {
pt0 = from[i];
pt1 = to[i];
err[i] = sqr(pt1.x - m[0]*pt0.x - m[1]*pt0.y - m[2]) +
sqr(pt1.y - m[3]*pt0.x - m[4]*pt0.y - m[5]);
}
}
affine2d.prototype.check_subset = function(from, to, count) {
return true; // all good
}
return affine2d;
})();
var mLtL = new jsfeat.matrix_t(9, 9, jsfeat.F32_t|jsfeat.C1_t);
var Evec = new jsfeat.matrix_t(9, 9, jsfeat.F32_t|jsfeat.C1_t);
var homography2d = (function () {
function homography2d() {
// empty constructor
//this.T0 = new jsfeat.matrix_t(3, 3, jsfeat.F32_t|jsfeat.C1_t);
//this.T1 = new jsfeat.matrix_t(3, 3, jsfeat.F32_t|jsfeat.C1_t);
//this.mLtL = new jsfeat.matrix_t(9, 9, jsfeat.F32_t|jsfeat.C1_t);
//this.Evec = new jsfeat.matrix_t(9, 9, jsfeat.F32_t|jsfeat.C1_t);
}
homography2d.prototype.run = function(from, to, model, count) {
var i=0,j=0;
var md=model.data, t0d=T0.data, t1d=T1.data;
var LtL=mLtL.data, evd=Evec.data;
var x=0.0,y=0.0,X=0.0,Y=0.0;
// norm
var smx=0.0, smy=0.0, cmx=0.0, cmy=0.0, sMx=0.0, sMy=0.0, cMx=0.0, cMy=0.0;
for(; i < count; ++i) {
cmx += to[i].x;
cmy += to[i].y;
cMx += from[i].x;
cMy += from[i].y;
}
cmx /= count; cmy /= count;
cMx /= count; cMy /= count;
for(i = 0; i < count; ++i)
{
smx += Math.abs(to[i].x - cmx);
smy += Math.abs(to[i].y - cmy);
sMx += Math.abs(from[i].x - cMx);
sMy += Math.abs(from[i].y - cMy);
}
if( Math.abs(smx) < jsfeat.EPSILON
|| Math.abs(smy) < jsfeat.EPSILON
|| Math.abs(sMx) < jsfeat.EPSILON
|| Math.abs(sMy) < jsfeat.EPSILON ) return 0;
smx = count/smx; smy = count/smy;
sMx = count/sMx; sMy = count/sMy;
t0d[0] = sMx; t0d[1] = 0; t0d[2] = -cMx*sMx;
t0d[3] = 0; t0d[4] = sMy; t0d[5] = -cMy*sMy;
t0d[6] = 0; t0d[7] = 0; t0d[8] = 1;
t1d[0] = 1.0/smx; t1d[1] = 0; t1d[2] = cmx;
t1d[3] = 0; t1d[4] = 1.0/smy; t1d[5] = cmy;
t1d[6] = 0; t1d[7] = 0; t1d[8] = 1;
//
// construct system
i = 81;
while(--i >= 0) {
LtL[i] = 0.0;
}
for(i = 0; i < count; ++i) {
x = (to[i].x - cmx) * smx;
y = (to[i].y - cmy) * smy;
X = (from[i].x - cMx) * sMx;
Y = (from[i].y - cMy) * sMy;
LtL[0] += X*X;
LtL[1] += X*Y;
LtL[2] += X;
LtL[6] += X*-x*X;
LtL[7] += X*-x*Y;
LtL[8] += X*-x;
LtL[10] += Y*Y;
LtL[11] += Y;
LtL[15] += Y*-x*X;
LtL[16] += Y*-x*Y;
LtL[17] += Y*-x;
LtL[20] += 1.0;
LtL[24] += -x*X;
LtL[25] += -x*Y;
LtL[26] += -x;
LtL[30] += X*X;
LtL[31] += X*Y;
LtL[32] += X;
LtL[33] += X*-y*X;
LtL[34] += X*-y*Y;
LtL[35] += X*-y;
LtL[40] += Y*Y;
LtL[41] += Y;
LtL[42] += Y*-y*X;
LtL[43] += Y*-y*Y;
LtL[44] += Y*-y;
LtL[50] += 1.0;
LtL[51] += -y*X;
LtL[52] += -y*Y;
LtL[53] += -y;
LtL[60] += -x*X*-x*X + -y*X*-y*X;
LtL[61] += -x*X*-x*Y + -y*X*-y*Y;
LtL[62] += -x*X*-x + -y*X*-y;
LtL[70] += -x*Y*-x*Y + -y*Y*-y*Y;
LtL[71] += -x*Y*-x + -y*Y*-y;
LtL[80] += -x*-x + -y*-y;
}
//
// symmetry
for(i = 0; i < 9; ++i) {
for(j = 0; j < i; ++j)
LtL[i*9+j] = LtL[j*9+i];
}
jsfeat.linalg.eigenVV(mLtL, Evec);
md[0]=evd[72], md[1]=evd[73], md[2]=evd[74];
md[3]=evd[75], md[4]=evd[76], md[5]=evd[77];
md[6]=evd[78], md[7]=evd[79], md[8]=evd[80];
// denormalize
jsfeat.matmath.multiply_3x3(model, T1, model);
jsfeat.matmath.multiply_3x3(model, model, T0);
// set bottom right to 1.0
x = 1.0/md[8];
md[0] *= x; md[1] *= x; md[2] *= x;
md[3] *= x; md[4] *= x; md[5] *= x;
md[6] *= x; md[7] *= x; md[8] = 1.0;
return 1;
}
homography2d.prototype.error = function(from, to, model, err, count) {
var i=0;
var pt0,pt1,ww=0.0,dx=0.0,dy=0.0;
var m=model.data;
for (; i < count; ++i) {
pt0 = from[i];
pt1 = to[i];
ww = 1.0/(m[6]*pt0.x + m[7]*pt0.y + 1.0);
dx = (m[0]*pt0.x + m[1]*pt0.y + m[2])*ww - pt1.x;
dy = (m[3]*pt0.x + m[4]*pt0.y + m[5])*ww - pt1.y;
err[i] = (dx*dx + dy*dy);
}
}
homography2d.prototype.check_subset = function(from, to, count) {
// seems to reject good subsets actually
//if( have_collinear_points(from, count) || have_collinear_points(to, count) ) {
//return false;
//}
if( count == 4 ) {
var negative = 0;
var fp0=from[0],fp1=from[1],fp2=from[2],fp3=from[3];
var tp0=to[0],tp1=to[1],tp2=to[2],tp3=to[3];
// set1
var A11=fp0.x, A12=fp0.y, A13=1.0;
var A21=fp1.x, A22=fp1.y, A23=1.0;
var A31=fp2.x, A32=fp2.y, A33=1.0;
var B11=tp0.x, B12=tp0.y, B13=1.0;
var B21=tp1.x, B22=tp1.y, B23=1.0;
var B31=tp2.x, B32=tp2.y, B33=1.0;
var detA = jsfeat.matmath.determinant_3x3(A11,A12,A13, A21,A22,A23, A31,A32,A33);
var detB = jsfeat.matmath.determinant_3x3(B11,B12,B13, B21,B22,B23, B31,B32,B33);
if(detA*detB < 0) negative++;
// set2
A11=fp1.x, A12=fp1.y;
A21=fp2.x, A22=fp2.y;
A31=fp3.x, A32=fp3.y;
B11=tp1.x, B12=tp1.y;
B21=tp2.x, B22=tp2.y;
B31=tp3.x, B32=tp3.y;
detA = jsfeat.matmath.determinant_3x3(A11,A12,A13, A21,A22,A23, A31,A32,A33);
detB = jsfeat.matmath.determinant_3x3(B11,B12,B13, B21,B22,B23, B31,B32,B33);
if(detA*detB < 0) negative++;
// set3
A11=fp0.x, A12=fp0.y;
A21=fp2.x, A22=fp2.y;
A31=fp3.x, A32=fp3.y;
B11=tp0.x, B12=tp0.y;
B21=tp2.x, B22=tp2.y;
B31=tp3.x, B32=tp3.y;
detA = jsfeat.matmath.determinant_3x3(A11,A12,A13, A21,A22,A23, A31,A32,A33);
detB = jsfeat.matmath.determinant_3x3(B11,B12,B13, B21,B22,B23, B31,B32,B33);
if(detA*detB < 0) negative++;
// set4
A11=fp0.x, A12=fp0.y;
A21=fp1.x, A22=fp1.y;
A31=fp3.x, A32=fp3.y;
B11=tp0.x, B12=tp0.y;
B21=tp1.x, B22=tp1.y;
B31=tp3.x, B32=tp3.y;
detA = jsfeat.matmath.determinant_3x3(A11,A12,A13, A21,A22,A23, A31,A32,A33);
detB = jsfeat.matmath.determinant_3x3(B11,B12,B13, B21,B22,B23, B31,B32,B33);
if(detA*detB < 0) negative++;
if(negative != 0 && negative != 4) {
return false;
}
}
return true; // all good
}
return homography2d;
})();
return {
affine2d:affine2d,
homography2d:homography2d
};
})();
var ransac_params_t = (function () {
function ransac_params_t(size, thresh, eps, prob) {
if (typeof size === "undefined") { size=0; }
if (typeof thresh === "undefined") { thresh=0.5; }
if (typeof eps === "undefined") { eps=0.5; }
if (typeof prob === "undefined") { prob=0.99; }
this.size = size;
this.thresh = thresh;
this.eps = eps;
this.prob = prob;
};
ransac_params_t.prototype.update_iters = function(_eps, max_iters) {
var num = Math.log(1 - this.prob);
var denom = Math.log(1 - Math.pow(1 - _eps, this.size));
return (denom >= 0 || -num >= max_iters*(-denom) ? max_iters : Math.round(num/denom))|0;
};
return ransac_params_t;
})();
var motion_estimator = (function() {
var get_subset = function(kernel, from, to, need_cnt, max_cnt, from_sub, to_sub) {
var max_try = 1000;
var indices = [];
var i=0, j=0, ssiter=0, idx_i=0, ok=false;
for(; ssiter < max_try; ++ssiter) {
i = 0;
for (; i < need_cnt && ssiter < max_try;) {
ok = false;
idx_i = 0;
while (!ok) {
ok = true;
idx_i = indices[i] = Math.floor(Math.random() * max_cnt)|0;
for (j = 0; j < i; ++j) {
if (idx_i == indices[j])
{ ok = false; break; }
}
}
from_sub[i] = from[idx_i];
to_sub[i] = to[idx_i];
if( !kernel.check_subset( from_sub, to_sub, i+1 ) ) {
ssiter++;
continue;
}
++i;
}
break;
}
return (i == need_cnt && ssiter < max_try);
}
var find_inliers = function(kernel, model, from, to, count, thresh, err, mask) {
var numinliers = 0, i=0, f=0;
var t = thresh*thresh;
kernel.error(from, to, model, err, count);
for(; i < count; ++i) {
f = err[i] <= t;
mask[i] = f;
numinliers += f;
}
return numinliers;
}
return {
ransac: function(params, kernel, from, to, count, model, mask, max_iters) {
if (typeof max_iters === "undefined") { max_iters=1000; }
if(count < params.size) return false;
var model_points = params.size;
var niters = max_iters, iter=0;
var result = false;
var subset0 = [];
var subset1 = [];
var found = false;
var mc=model.cols,mr=model.rows;
var dt = model.type | jsfeat.C1_t;
var m_buff = jsfeat.cache.get_buffer((mc*mr)<<3);
var ms_buff = jsfeat.cache.get_buffer(count);
var err_buff = jsfeat.cache.get_buffer(count<<2);
var M = new jsfeat.matrix_t(mc, mr, dt, m_buff.data);
var curr_mask = new jsfeat.matrix_t(count, 1, jsfeat.U8C1_t, ms_buff.data);
var inliers_max = -1, numinliers=0;
var nmodels = 0;
var err = err_buff.f32;
// special case
if(count == model_points) {
if(kernel.run(from, to, M, count) <= 0) {
jsfeat.cache.put_buffer(m_buff);
jsfeat.cache.put_buffer(ms_buff);
jsfeat.cache.put_buffer(err_buff);
return false;
}
M.copy_to(model);
if(mask) {
while(--count >= 0) {
mask.data[count] = 1;
}
}
jsfeat.cache.put_buffer(m_buff);
jsfeat.cache.put_buffer(ms_buff);
jsfeat.cache.put_buffer(err_buff);
return true;
}
for (; iter < niters; ++iter) {
// generate subset
found = get_subset(kernel, from, to, model_points, count, subset0, subset1);
if(!found) {
if(iter == 0) {
jsfeat.cache.put_buffer(m_buff);
jsfeat.cache.put_buffer(ms_buff);
jsfeat.cache.put_buffer(err_buff);
return false;
}
break;
}
nmodels = kernel.run( subset0, subset1, M, model_points );
if(nmodels <= 0)
continue;
// TODO handle multimodel output
numinliers = find_inliers(kernel, M, from, to, count, params.thresh, err, curr_mask.data);
if( numinliers > Math.max(inliers_max, model_points-1) ) {
M.copy_to(model);
inliers_max = numinliers;
if(mask) curr_mask.copy_to(mask);
niters = params.update_iters((count - numinliers)/count, niters);
result = true;
}
}
jsfeat.cache.put_buffer(m_buff);
jsfeat.cache.put_buffer(ms_buff);
jsfeat.cache.put_buffer(err_buff);
return result;
},
lmeds: function(params, kernel, from, to, count, model, mask, max_iters) {
if (typeof max_iters === "undefined") { max_iters=1000; }
if(count < params.size) return false;
var model_points = params.size;
var niters = max_iters, iter=0;
var result = false;
var subset0 = [];
var subset1 = [];
var found = false;
var mc=model.cols,mr=model.rows;
var dt = model.type | jsfeat.C1_t;
var m_buff = jsfeat.cache.get_buffer((mc*mr)<<3);
var ms_buff = jsfeat.cache.get_buffer(count);
var err_buff = jsfeat.cache.get_buffer(count<<2);
var M = new jsfeat.matrix_t(mc, mr, dt, m_buff.data);
var curr_mask = new jsfeat.matrix_t(count, 1, jsfeat.U8_t|jsfeat.C1_t, ms_buff.data);
var numinliers=0;
var nmodels = 0;
var err = err_buff.f32;
var min_median = 1000000000.0, sigma=0.0, median=0.0;
params.eps = 0.45;
niters = params.update_iters(params.eps, niters);
// special case
if(count == model_points) {
if(kernel.run(from, to, M, count) <= 0) {
jsfeat.cache.put_buffer(m_buff);
jsfeat.cache.put_buffer(ms_buff);
jsfeat.cache.put_buffer(err_buff);
return false;
}
M.copy_to(model);
if(mask) {
while(--count >= 0) {
mask.data[count] = 1;
}
}
jsfeat.cache.put_buffer(m_buff);
jsfeat.cache.put_buffer(ms_buff);
jsfeat.cache.put_buffer(err_buff);
return true;
}
for (; iter < niters; ++iter) {
// generate subset
found = get_subset(kernel, from, to, model_points, count, subset0, subset1);
if(!found) {
if(iter == 0) {
jsfeat.cache.put_buffer(m_buff);
jsfeat.cache.put_buffer(ms_buff);
jsfeat.cache.put_buffer(err_buff);
return false;
}
break;
}
nmodels = kernel.run( subset0, subset1, M, model_points );
if(nmodels <= 0)
continue;
// TODO handle multimodel output
kernel.error(from, to, M, err, count);
median = jsfeat.math.median(err, 0, count-1);
if(median < min_median) {
min_median = median;
M.copy_to(model);
result = true;
}
}
if(result) {
sigma = 2.5*1.4826*(1 + 5.0/(count - model_points))*Math.sqrt(min_median);
sigma = Math.max(sigma, 0.001);
numinliers = find_inliers(kernel, model, from, to, count, sigma, err, curr_mask.data);
if(mask) curr_mask.copy_to(mask);
result = numinliers >= model_points;
}
jsfeat.cache.put_buffer(m_buff);
jsfeat.cache.put_buffer(ms_buff);
jsfeat.cache.put_buffer(err_buff);
return result;
}
};
})();
global.ransac_params_t = ransac_params_t;
global.motion_model = motion_model;
global.motion_estimator = motion_estimator;
})(jsfeat);
/**
* @author Eugene Zatepyakin / http://inspirit.ru/
*/
(function(global) {
"use strict";
//
var imgproc = (function() {
var _resample_u8 = function(src, dst, nw, nh) {
var xofs_count=0;
var ch=src.channel,w=src.cols,h=src.rows;
var src_d=src.data,dst_d=dst.data;
var scale_x = w / nw, scale_y = h / nh;
var inv_scale_256 = (scale_x * scale_y * 0x10000)|0;
var dx=0,dy=0,sx=0,sy=0,sx1=0,sx2=0,i=0,k=0,fsx1=0.0,fsx2=0.0;
var a=0,b=0,dxn=0,alpha=0,beta=0,beta1=0;
var buf_node = jsfeat.cache.get_buffer((nw*ch)<<2);
var sum_node = jsfeat.cache.get_buffer((nw*ch)<<2);
var xofs_node = jsfeat.cache.get_buffer((w*2*3)<<2);
var buf = buf_node.i32;
var sum = sum_node.i32;
var xofs = xofs_node.i32;
for (; dx < nw; dx++) {
fsx1 = dx * scale_x, fsx2 = fsx1 + scale_x;
sx1 = (fsx1 + 1.0 - 1e-6)|0, sx2 = fsx2|0;
sx1 = Math.min(sx1, w - 1);
sx2 = Math.min(sx2, w - 1);
if(sx1 > fsx1) {
xofs[k++] = (dx * ch)|0;
xofs[k++] = ((sx1 - 1)*ch)|0;
xofs[k++] = ((sx1 - fsx1) * 0x100)|0;
xofs_count++;
}
for(sx = sx1; sx < sx2; sx++){
xofs_count++;
xofs[k++] = (dx * ch)|0;
xofs[k++] = (sx * ch)|0;
xofs[k++] = 256;
}
if(fsx2 - sx2 > 1e-3) {
xofs_count++;
xofs[k++] = (dx * ch)|0;
xofs[k++] = (sx2 * ch)|0;
xofs[k++] = ((fsx2 - sx2) * 256)|0;
}
}
for (dx = 0; dx < nw * ch; dx++) {
buf[dx] = sum[dx] = 0;
}
dy = 0;
for (sy = 0; sy < h; sy++) {
a = w * sy;
for (k = 0; k < xofs_count; k++) {
dxn = xofs[k*3];
sx1 = xofs[k*3+1];
alpha = xofs[k*3+2];
for (i = 0; i < ch; i++) {
buf[dxn + i] += src_d[a+sx1+i] * alpha;
}
}
if ((dy + 1) * scale_y <= sy + 1 || sy == h - 1) {
beta = (Math.max(sy + 1 - (dy + 1) * scale_y, 0.0) * 256)|0;
beta1 = 256 - beta;
b = nw * dy;
if (beta <= 0) {
for (dx = 0; dx < nw * ch; dx++) {
dst_d[b+dx] = Math.min(Math.max((sum[dx] + buf[dx] * 256) / inv_scale_256, 0), 255);
sum[dx] = buf[dx] = 0;
}
} else {
for (dx = 0; dx < nw * ch; dx++) {
dst_d[b+dx] = Math.min(Math.max((sum[dx] + buf[dx] * beta1) / inv_scale_256, 0), 255);
sum[dx] = buf[dx] * beta;
buf[dx] = 0;
}
}
dy++;
} else {
for(dx = 0; dx < nw * ch; dx++) {
sum[dx] += buf[dx] * 256;
buf[dx] = 0;
}
}
}
jsfeat.cache.put_buffer(sum_node);
jsfeat.cache.put_buffer(buf_node);
jsfeat.cache.put_buffer(xofs_node);
}
var _resample = function(src, dst, nw, nh) {
var xofs_count=0;
var ch=src.channel,w=src.cols,h=src.rows;
var src_d=src.data,dst_d=dst.data;
var scale_x = w / nw, scale_y = h / nh;
var scale = 1.0 / (scale_x * scale_y);
var dx=0,dy=0,sx=0,sy=0,sx1=0,sx2=0,i=0,k=0,fsx1=0.0,fsx2=0.0;
var a=0,b=0,dxn=0,alpha=0.0,beta=0.0,beta1=0.0;
var buf_node = jsfeat.cache.get_buffer((nw*ch)<<2);
var sum_node = jsfeat.cache.get_buffer((nw*ch)<<2);
var xofs_node = jsfeat.cache.get_buffer((w*2*3)<<2);
var buf = buf_node.f32;
var sum = sum_node.f32;
var xofs = xofs_node.f32;
for (; dx < nw; dx++) {
fsx1 = dx * scale_x, fsx2 = fsx1 + scale_x;
sx1 = (fsx1 + 1.0 - 1e-6)|0, sx2 = fsx2|0;
sx1 = Math.min(sx1, w - 1);
sx2 = Math.min(sx2, w - 1);
if(sx1 > fsx1) {
xofs_count++;
xofs[k++] = ((sx1 - 1)*ch)|0;
xofs[k++] = (dx * ch)|0;
xofs[k++] = (sx1 - fsx1) * scale;
}
for(sx = sx1; sx < sx2; sx++){
xofs_count++;
xofs[k++] = (sx * ch)|0;
xofs[k++] = (dx * ch)|0;
xofs[k++] = scale;
}
if(fsx2 - sx2 > 1e-3) {
xofs_count++;
xofs[k++] = (sx2 * ch)|0;
xofs[k++] = (dx * ch)|0;
xofs[k++] = (fsx2 - sx2) * scale;
}
}
for (dx = 0; dx < nw * ch; dx++) {
buf[dx] = sum[dx] = 0;
}
dy = 0;
for (sy = 0; sy < h; sy++) {
a = w * sy;
for (k = 0; k < xofs_count; k++) {
sx1 = xofs[k*3]|0;
dxn = xofs[k*3+1]|0;
alpha = xofs[k*3+2];
for (i = 0; i < ch; i++) {
buf[dxn + i] += src_d[a+sx1+i] * alpha;
}
}
if ((dy + 1) * scale_y <= sy + 1 || sy == h - 1) {
beta = Math.max(sy + 1 - (dy + 1) * scale_y, 0.0);
beta1 = 1.0 - beta;
b = nw * dy;
if (Math.abs(beta) < 1e-3) {
for (dx = 0; dx < nw * ch; dx++) {
dst_d[b+dx] = sum[dx] + buf[dx];
sum[dx] = buf[dx] = 0;
}
} else {
for (dx = 0; dx < nw * ch; dx++) {
dst_d[b+dx] = sum[dx] + buf[dx] * beta1;
sum[dx] = buf[dx] * beta;
buf[dx] = 0;
}
}
dy++;
} else {
for(dx = 0; dx < nw * ch; dx++) {
sum[dx] += buf[dx];
buf[dx] = 0;
}
}
}
jsfeat.cache.put_buffer(sum_node);
jsfeat.cache.put_buffer(buf_node);
jsfeat.cache.put_buffer(xofs_node);
}
var _convol_u8 = function(buf, src_d, dst_d, w, h, filter, kernel_size, half_kernel) {
var i=0,j=0,k=0,sp=0,dp=0,sum=0,sum1=0,sum2=0,sum3=0,f0=filter[0],fk=0;
var w2=w<<1,w3=w*3,w4=w<<2;
// hor pass
for (; i < h; ++i) {
sum = src_d[sp];
for (j = 0; j < half_kernel; ++j) {
buf[j] = sum;
}
for (j = 0; j <= w-2; j+=2) {
buf[j + half_kernel] = src_d[sp+j];
buf[j + half_kernel+1] = src_d[sp+j+1];
}
for (; j < w; ++j) {
buf[j + half_kernel] = src_d[sp+j];
}
sum = src_d[sp+w-1];
for (j = w; j < half_kernel + w; ++j) {
buf[j + half_kernel] = sum;
}
for (j = 0; j <= w-4; j+=4) {
sum = buf[j] * f0,
sum1 = buf[j+1] * f0,
sum2 = buf[j+2] * f0,
sum3 = buf[j+3] * f0;
for (k = 1; k < kernel_size; ++k) {
fk = filter[k];
sum += buf[k + j] * fk;
sum1 += buf[k + j+1] * fk;
sum2 += buf[k + j+2] * fk;
sum3 += buf[k + j+3] * fk;
}
dst_d[dp+j] = Math.min(sum >> 8, 255);
dst_d[dp+j+1] = Math.min(sum1 >> 8, 255);
dst_d[dp+j+2] = Math.min(sum2 >> 8, 255);
dst_d[dp+j+3] = Math.min(sum3 >> 8, 255);
}
for (; j < w; ++j) {
sum = buf[j] * f0;
for (k = 1; k < kernel_size; ++k) {
sum += buf[k + j] * filter[k];
}
dst_d[dp+j] = Math.min(sum >> 8, 255);
}
sp += w;
dp += w;
}
// vert pass
for (i = 0; i < w; ++i) {
sum = dst_d[i];
for (j = 0; j < half_kernel; ++j) {
buf[j] = sum;
}
k = i;
for (j = 0; j <= h-2; j+=2, k+=w2) {
buf[j+half_kernel] = dst_d[k];
buf[j+half_kernel+1] = dst_d[k+w];
}
for (; j < h; ++j, k+=w) {
buf[j+half_kernel] = dst_d[k];
}
sum = dst_d[(h-1)*w + i];
for (j = h; j < half_kernel + h; ++j) {
buf[j + half_kernel] = sum;
}
dp = i;
for (j = 0; j <= h-4; j+=4, dp+=w4) {
sum = buf[j] * f0,
sum1 = buf[j+1] * f0,
sum2 = buf[j+2] * f0,
sum3 = buf[j+3] * f0;
for (k = 1; k < kernel_size; ++k) {
fk = filter[k];
sum += buf[k + j] * fk;
sum1 += buf[k + j+1] * fk;
sum2 += buf[k + j+2] * fk;
sum3 += buf[k + j+3] * fk;
}
dst_d[dp] = Math.min(sum >> 8, 255);
dst_d[dp+w] = Math.min(sum1 >> 8, 255);
dst_d[dp+w2] = Math.min(sum2 >> 8, 255);
dst_d[dp+w3] = Math.min(sum3 >> 8, 255);
}
for (; j < h; ++j, dp+=w) {
sum = buf[j] * f0;
for (k = 1; k < kernel_size; ++k) {
sum += buf[k + j] * filter[k];
}
dst_d[dp] = Math.min(sum >> 8, 255);
}
}
}
var _convol = function(buf, src_d, dst_d, w, h, filter, kernel_size, half_kernel) {
var i=0,j=0,k=0,sp=0,dp=0,sum=0.0,sum1=0.0,sum2=0.0,sum3=0.0,f0=filter[0],fk=0.0;
var w2=w<<1,w3=w*3,w4=w<<2;
// hor pass
for (; i < h; ++i) {
sum = src_d[sp];
for (j = 0; j < half_kernel; ++j) {
buf[j] = sum;
}
for (j = 0; j <= w-2; j+=2) {
buf[j + half_kernel] = src_d[sp+j];
buf[j + half_kernel+1] = src_d[sp+j+1];
}
for (; j < w; ++j) {
buf[j + half_kernel] = src_d[sp+j];
}
sum = src_d[sp+w-1];
for (j = w; j < half_kernel + w; ++j) {
buf[j + half_kernel] = sum;
}
for (j = 0; j <= w-4; j+=4) {
sum = buf[j] * f0,
sum1 = buf[j+1] * f0,
sum2 = buf[j+2] * f0,
sum3 = buf[j+3] * f0;
for (k = 1; k < kernel_size; ++k) {
fk = filter[k];
sum += buf[k + j] * fk;
sum1 += buf[k + j+1] * fk;
sum2 += buf[k + j+2] * fk;
sum3 += buf[k + j+3] * fk;
}
dst_d[dp+j] = sum;
dst_d[dp+j+1] = sum1;
dst_d[dp+j+2] = sum2;
dst_d[dp+j+3] = sum3;
}
for (; j < w; ++j) {
sum = buf[j] * f0;
for (k = 1; k < kernel_size; ++k) {
sum += buf[k + j] * filter[k];
}
dst_d[dp+j] = sum;
}
sp += w;
dp += w;
}
// vert pass
for (i = 0; i < w; ++i) {
sum = dst_d[i];
for (j = 0; j < half_kernel; ++j) {
buf[j] = sum;
}
k = i;
for (j = 0; j <= h-2; j+=2, k+=w2) {
buf[j+half_kernel] = dst_d[k];
buf[j+half_kernel+1] = dst_d[k+w];
}
for (; j < h; ++j, k+=w) {
buf[j+half_kernel] = dst_d[k];
}
sum = dst_d[(h-1)*w + i];
for (j = h; j < half_kernel + h; ++j) {
buf[j + half_kernel] = sum;
}
dp = i;
for (j = 0; j <= h-4; j+=4, dp+=w4) {
sum = buf[j] * f0,
sum1 = buf[j+1] * f0,
sum2 = buf[j+2] * f0,
sum3 = buf[j+3] * f0;
for (k = 1; k < kernel_size; ++k) {
fk = filter[k];
sum += buf[k + j] * fk;
sum1 += buf[k + j+1] * fk;
sum2 += buf[k + j+2] * fk;
sum3 += buf[k + j+3] * fk;
}
dst_d[dp] = sum;
dst_d[dp+w] = sum1;
dst_d[dp+w2] = sum2;
dst_d[dp+w3] = sum3;
}
for (; j < h; ++j, dp+=w) {
sum = buf[j] * f0;
for (k = 1; k < kernel_size; ++k) {
sum += buf[k + j] * filter[k];
}
dst_d[dp] = sum;
}
}
}
return {
// TODO: add support for RGB/BGR order
// for raw arrays
grayscale: function(src, w, h, dst, code) {
// this is default image data representation in browser
if (typeof code === "undefined") { code = jsfeat.COLOR_RGBA2GRAY; }
var x=0, y=0, i=0, j=0, ir=0,jr=0;
var coeff_r = 4899, coeff_g = 9617, coeff_b = 1868, cn = 4;
if(code == jsfeat.COLOR_BGRA2GRAY || code == jsfeat.COLOR_BGR2GRAY) {
coeff_r = 1868;
coeff_b = 4899;
}
if(code == jsfeat.COLOR_RGB2GRAY || code == jsfeat.COLOR_BGR2GRAY) {
cn = 3;
}
var cn2 = cn<<1, cn3 = (cn*3)|0;
dst.resize(w, h, 1);
var dst_u8 = dst.data;
for(y = 0; y < h; ++y, j+=w, i+=w*cn) {
for(x = 0, ir = i, jr = j; x <= w-4; x+=4, ir+=cn<<2, jr+=4) {
dst_u8[jr] = (src[ir] * coeff_r + src[ir+1] * coeff_g + src[ir+2] * coeff_b + 8192) >> 14;
dst_u8[jr + 1] = (src[ir+cn] * coeff_r + src[ir+cn+1] * coeff_g + src[ir+cn+2] * coeff_b + 8192) >> 14;
dst_u8[jr + 2] = (src[ir+cn2] * coeff_r + src[ir+cn2+1] * coeff_g + src[ir+cn2+2] * coeff_b + 8192) >> 14;
dst_u8[jr + 3] = (src[ir+cn3] * coeff_r + src[ir+cn3+1] * coeff_g + src[ir+cn3+2] * coeff_b + 8192) >> 14;
}
for (; x < w; ++x, ++jr, ir+=cn) {
dst_u8[jr] = (src[ir] * coeff_r + src[ir+1] * coeff_g + src[ir+2] * coeff_b + 8192) >> 14;
}
}
},
// derived from CCV library
resample: function(src, dst, nw, nh) {
var h=src.rows,w=src.cols;
if (h > nh && w > nw) {
dst.resize(nw, nh, src.channel);
// using the fast alternative (fix point scale, 0x100 to avoid overflow)
if (src.type&jsfeat.U8_t && dst.type&jsfeat.U8_t && h * w / (nh * nw) < 0x100) {
_resample_u8(src, dst, nw, nh);
} else {
_resample(src, dst, nw, nh);
}
}
},
box_blur_gray: function(src, dst, radius, options) {
if (typeof options === "undefined") { options = 0; }
var w=src.cols, h=src.rows, h2=h<<1, w2=w<<1;
var i=0,x=0,y=0,end=0;
var windowSize = ((radius << 1) + 1)|0;
var radiusPlusOne = (radius + 1)|0, radiusPlus2 = (radiusPlusOne+1)|0;
var scale = options&jsfeat.BOX_BLUR_NOSCALE ? 1 : (1.0 / (windowSize*windowSize));
var tmp_buff = jsfeat.cache.get_buffer((w*h)<<2);
var sum=0, dstIndex=0, srcIndex = 0, nextPixelIndex=0, previousPixelIndex=0;
var data_i32 = tmp_buff.i32; // to prevent overflow
var data_u8 = src.data;
var hold=0;
dst.resize(w, h, src.channel);
// first pass
// no need to scale
//data_u8 = src.data;
//data_i32 = tmp;
for (y = 0; y < h; ++y) {
dstIndex = y;
sum = radiusPlusOne * data_u8[srcIndex];
for(i = (srcIndex+1)|0, end=(srcIndex+radius)|0; i <= end; ++i) {
sum += data_u8[i];
}
nextPixelIndex = (srcIndex + radiusPlusOne)|0;
previousPixelIndex = srcIndex;
hold = data_u8[previousPixelIndex];
for(x = 0; x < radius; ++x, dstIndex += h) {
data_i32[dstIndex] = sum;
sum += data_u8[nextPixelIndex]- hold;
nextPixelIndex ++;
}
for(; x < w-radiusPlus2; x+=2, dstIndex += h2) {
data_i32[dstIndex] = sum;
sum += data_u8[nextPixelIndex]- data_u8[previousPixelIndex];
data_i32[dstIndex+h] = sum;
sum += data_u8[nextPixelIndex+1]- data_u8[previousPixelIndex+1];
nextPixelIndex +=2;
previousPixelIndex +=2;
}
for(; x < w-radiusPlusOne; ++x, dstIndex += h) {
data_i32[dstIndex] = sum;
sum += data_u8[nextPixelIndex]- data_u8[previousPixelIndex];
nextPixelIndex ++;
previousPixelIndex ++;
}
hold = data_u8[nextPixelIndex-1];
for(; x < w; ++x, dstIndex += h) {
data_i32[dstIndex] = sum;
sum += hold- data_u8[previousPixelIndex];
previousPixelIndex ++;
}
srcIndex += w;
}
//
// second pass
srcIndex = 0;
//data_i32 = tmp; // this is a transpose
data_u8 = dst.data;
// dont scale result
if(scale == 1) {
for (y = 0; y < w; ++y) {
dstIndex = y;
sum = radiusPlusOne * data_i32[srcIndex];
for(i = (srcIndex+1)|0, end=(srcIndex+radius)|0; i <= end; ++i) {
sum += data_i32[i];
}
nextPixelIndex = srcIndex + radiusPlusOne;
previousPixelIndex = srcIndex;
hold = data_i32[previousPixelIndex];
for(x = 0; x < radius; ++x, dstIndex += w) {
data_u8[dstIndex] = sum;
sum += data_i32[nextPixelIndex]- hold;
nextPixelIndex ++;
}
for(; x < h-radiusPlus2; x+=2, dstIndex += w2) {
data_u8[dstIndex] = sum;
sum += data_i32[nextPixelIndex]- data_i32[previousPixelIndex];
data_u8[dstIndex+w] = sum;
sum += data_i32[nextPixelIndex+1]- data_i32[previousPixelIndex+1];
nextPixelIndex +=2;
previousPixelIndex +=2;
}
for(; x < h-radiusPlusOne; ++x, dstIndex += w) {
data_u8[dstIndex] = sum;
sum += data_i32[nextPixelIndex]- data_i32[previousPixelIndex];
nextPixelIndex ++;
previousPixelIndex ++;
}
hold = data_i32[nextPixelIndex-1];
for(; x < h; ++x, dstIndex += w) {
data_u8[dstIndex] = sum;
sum += hold- data_i32[previousPixelIndex];
previousPixelIndex ++;
}
srcIndex += h;
}
} else {
for (y = 0; y < w; ++y) {
dstIndex = y;
sum = radiusPlusOne * data_i32[srcIndex];
for(i = (srcIndex+1)|0, end=(srcIndex+radius)|0; i <= end; ++i) {
sum += data_i32[i];
}
nextPixelIndex = srcIndex + radiusPlusOne;
previousPixelIndex = srcIndex;
hold = data_i32[previousPixelIndex];
for(x = 0; x < radius; ++x, dstIndex += w) {
data_u8[dstIndex] = sum*scale;
sum += data_i32[nextPixelIndex]- hold;
nextPixelIndex ++;
}
for(; x < h-radiusPlus2; x+=2, dstIndex += w2) {
data_u8[dstIndex] = sum*scale;
sum += data_i32[nextPixelIndex]- data_i32[previousPixelIndex];
data_u8[dstIndex+w] = sum*scale;
sum += data_i32[nextPixelIndex+1]- data_i32[previousPixelIndex+1];
nextPixelIndex +=2;
previousPixelIndex +=2;
}
for(; x < h-radiusPlusOne; ++x, dstIndex += w) {
data_u8[dstIndex] = sum*scale;
sum += data_i32[nextPixelIndex]- data_i32[previousPixelIndex];
nextPixelIndex ++;
previousPixelIndex ++;
}
hold = data_i32[nextPixelIndex-1];
for(; x < h; ++x, dstIndex += w) {
data_u8[dstIndex] = sum*scale;
sum += hold- data_i32[previousPixelIndex];
previousPixelIndex ++;
}
srcIndex += h;
}
}
jsfeat.cache.put_buffer(tmp_buff);
},
gaussian_blur: function(src, dst, kernel_size, sigma) {
if (typeof sigma === "undefined") { sigma = 0.0; }
if (typeof kernel_size === "undefined") { kernel_size = 0; }
kernel_size = kernel_size == 0 ? (Math.max(1, (4.0 * sigma + 1.0 - 1e-8)) * 2 + 1)|0 : kernel_size;
var half_kernel = kernel_size >> 1;
var w = src.cols, h = src.rows;
var data_type = src.type, is_u8 = data_type&jsfeat.U8_t;
dst.resize(w, h, src.channel);
var src_d = src.data, dst_d = dst.data;
var buf,filter,buf_sz=(kernel_size + Math.max(h, w))|0;
var buf_node = jsfeat.cache.get_buffer(buf_sz<<2);
var filt_node = jsfeat.cache.get_buffer(kernel_size<<2);
if(is_u8) {
buf = buf_node.i32;
filter = filt_node.i32;
} else if(data_type&jsfeat.S32_t) {
buf = buf_node.i32;
filter = filt_node.f32;
} else {
buf = buf_node.f32;
filter = filt_node.f32;
}
jsfeat.math.get_gaussian_kernel(kernel_size, sigma, filter, data_type);
if(is_u8) {
_convol_u8(buf, src_d, dst_d, w, h, filter, kernel_size, half_kernel);
} else {
_convol(buf, src_d, dst_d, w, h, filter, kernel_size, half_kernel);
}
jsfeat.cache.put_buffer(buf_node);
jsfeat.cache.put_buffer(filt_node);
},
hough_transform: function( img, rho_res, theta_res, threshold ) {
var image = img.data;
var width = img.cols;
var height = img.rows;
var step = width;
min_theta = 0.0;
max_theta = Math.PI;
numangle = Math.round((max_theta - min_theta) / theta_res);
numrho = Math.round(((width + height) * 2 + 1) / rho_res);
irho = 1.0 / rho_res;
var accum = new Int32Array((numangle+2) * (numrho+2)); //typed arrays are initialized to 0
var tabSin = new Float32Array(numangle);
var tabCos = new Float32Array(numangle);
var n=0;
var ang = min_theta;
for(; n < numangle; n++ ) {
tabSin[n] = Math.sin(ang) * irho;
tabCos[n] = Math.cos(ang) * irho;
ang += theta_res
}
// stage 1. fill accumulator
for( var i = 0; i < height; i++ ) {
for( var j = 0; j < width; j++ ) {
if( image[i * step + j] != 0 ) {
//console.log(r, (n+1) * (numrho+2) + r+1, tabCos[n], tabSin[n]);
for(var n = 0; n < numangle; n++ ) {
var r = Math.round( j * tabCos[n] + i * tabSin[n] );
r += (numrho - 1) / 2;
accum[(n+1) * (numrho+2) + r+1] += 1;
}
}
}
}
// stage 2. find local maximums
//TODO: Consider making a vector class that uses typed arrays
_sort_buf = new Array();
for(var r = 0; r < numrho; r++ ) {
for(var n = 0; n < numangle; n++ ) {
var base = (n+1) * (numrho+2) + r+1;
if( accum[base] > threshold &&
accum[base] > accum[base - 1] && accum[base] >= accum[base + 1] &&
accum[base] > accum[base - numrho - 2] && accum[base] >= accum[base + numrho + 2] ) {
_sort_buf.push(base);
}
}
}
// stage 3. sort the detected lines by accumulator value
_sort_buf.sort(function(l1, l2) {
return accum[l1] > accum[l2] || (accum[l1] == accum[l2] && l1 < l2);
});
// stage 4. store the first min(total,linesMax) lines to the output buffer
linesMax = Math.min(numangle*numrho, _sort_buf.length);
scale = 1.0 / (numrho+2);
lines = new Array();
for( var i = 0; i < linesMax; i++ ) {
var idx = _sort_buf[i];
var n = Math.floor(idx*scale) - 1;
var r = idx - (n+1)*(numrho+2) - 1;
var lrho = (r - (numrho - 1)*0.5) * rho_res;
var langle = n * theta_res;
lines.push([lrho, langle]);
}
return lines;
},
// assume we always need it for u8 image
pyrdown: function(src, dst, sx, sy) {
// this is needed for bbf
if (typeof sx === "undefined") { sx = 0; }
if (typeof sy === "undefined") { sy = 0; }
var w = src.cols, h = src.rows;
var w2 = w >> 1, h2 = h >> 1;
var _w2 = w2 - (sx << 1), _h2 = h2 - (sy << 1);
var x=0,y=0,sptr=sx+sy*w,sline=0,dptr=0,dline=0;
dst.resize(w2, h2, src.channel);
var src_d = src.data, dst_d = dst.data;
for(y = 0; y < _h2; ++y) {
sline = sptr;
dline = dptr;
for(x = 0; x <= _w2-2; x+=2, dline+=2, sline += 4) {
dst_d[dline] = (src_d[sline] + src_d[sline+1] +
src_d[sline+w] + src_d[sline+w+1] + 2) >> 2;
dst_d[dline+1] = (src_d[sline+2] + src_d[sline+3] +
src_d[sline+w+2] + src_d[sline+w+3] + 2) >> 2;
}
for(; x < _w2; ++x, ++dline, sline += 2) {
dst_d[dline] = (src_d[sline] + src_d[sline+1] +
src_d[sline+w] + src_d[sline+w+1] + 2) >> 2;
}
sptr += w << 1;
dptr += w2;
}
},
// dst: [gx,gy,...]
scharr_derivatives: function(src, dst) {
var w = src.cols, h = src.rows;
var dstep = w<<1,x=0,y=0,x1=0,a,b,c,d,e,f;
var srow0=0,srow1=0,srow2=0,drow=0;
var trow0,trow1;
dst.resize(w, h, 2); // 2 channel output gx, gy
var img = src.data, gxgy=dst.data;
var buf0_node = jsfeat.cache.get_buffer((w+2)<<2);
var buf1_node = jsfeat.cache.get_buffer((w+2)<<2);
if(src.type&jsfeat.U8_t || src.type&jsfeat.S32_t) {
trow0 = buf0_node.i32;
trow1 = buf1_node.i32;
} else {
trow0 = buf0_node.f32;
trow1 = buf1_node.f32;
}
for(; y < h; ++y, srow1+=w) {
srow0 = ((y > 0 ? y-1 : 1)*w)|0;
srow2 = ((y < h-1 ? y+1 : h-2)*w)|0;
drow = (y*dstep)|0;
// do vertical convolution
for(x = 0, x1 = 1; x <= w-2; x+=2, x1+=2) {
a = img[srow0+x], b = img[srow2+x];
trow0[x1] = ( (a + b)*3 + (img[srow1+x])*10 );
trow1[x1] = ( b - a );
//
a = img[srow0+x+1], b = img[srow2+x+1];
trow0[x1+1] = ( (a + b)*3 + (img[srow1+x+1])*10 );
trow1[x1+1] = ( b - a );
}
for(; x < w; ++x, ++x1) {
a = img[srow0+x], b = img[srow2+x];
trow0[x1] = ( (a + b)*3 + (img[srow1+x])*10 );
trow1[x1] = ( b - a );
}
// make border
x = (w + 1)|0;
trow0[0] = trow0[1]; trow0[x] = trow0[w];
trow1[0] = trow1[1]; trow1[x] = trow1[w];
// do horizontal convolution, interleave the results and store them
for(x = 0; x <= w-4; x+=4) {
a = trow1[x+2], b = trow1[x+1], c = trow1[x+3], d = trow1[x+4],
e = trow0[x+2], f = trow0[x+3];
gxgy[drow++] = ( e - trow0[x] );
gxgy[drow++] = ( (a + trow1[x])*3 + b*10 );
gxgy[drow++] = ( f - trow0[x+1] );
gxgy[drow++] = ( (c + b)*3 + a*10 );
gxgy[drow++] = ( (trow0[x+4] - e) );
gxgy[drow++] = ( ((d + a)*3 + c*10) );
gxgy[drow++] = ( (trow0[x+5] - f) );
gxgy[drow++] = ( ((trow1[x+5] + c)*3 + d*10) );
}
for(; x < w; ++x) {
gxgy[drow++] = ( (trow0[x+2] - trow0[x]) );
gxgy[drow++] = ( ((trow1[x+2] + trow1[x])*3 + trow1[x+1]*10) );
}
}
jsfeat.cache.put_buffer(buf0_node);
jsfeat.cache.put_buffer(buf1_node);
},
// compute gradient using Sobel kernel [1 2 1] * [-1 0 1]^T
// dst: [gx,gy,...]
sobel_derivatives: function(src, dst) {
var w = src.cols, h = src.rows;
var dstep = w<<1,x=0,y=0,x1=0,a,b,c,d,e,f;
var srow0=0,srow1=0,srow2=0,drow=0;
var trow0,trow1;
dst.resize(w, h, 2); // 2 channel output gx, gy
var img = src.data, gxgy=dst.data;
var buf0_node = jsfeat.cache.get_buffer((w+2)<<2);
var buf1_node = jsfeat.cache.get_buffer((w+2)<<2);
if(src.type&jsfeat.U8_t || src.type&jsfeat.S32_t) {
trow0 = buf0_node.i32;
trow1 = buf1_node.i32;
} else {
trow0 = buf0_node.f32;
trow1 = buf1_node.f32;
}
for(; y < h; ++y, srow1+=w) {
srow0 = ((y > 0 ? y-1 : 1)*w)|0;
srow2 = ((y < h-1 ? y+1 : h-2)*w)|0;
drow = (y*dstep)|0;
// do vertical convolution
for(x = 0, x1 = 1; x <= w-2; x+=2, x1+=2) {
a = img[srow0+x], b = img[srow2+x];
trow0[x1] = ( (a + b) + (img[srow1+x]*2) );
trow1[x1] = ( b - a );
//
a = img[srow0+x+1], b = img[srow2+x+1];
trow0[x1+1] = ( (a + b) + (img[srow1+x+1]*2) );
trow1[x1+1] = ( b - a );
}
for(; x < w; ++x, ++x1) {
a = img[srow0+x], b = img[srow2+x];
trow0[x1] = ( (a + b) + (img[srow1+x]*2) );
trow1[x1] = ( b - a );
}
// make border
x = (w + 1)|0;
trow0[0] = trow0[1]; trow0[x] = trow0[w];
trow1[0] = trow1[1]; trow1[x] = trow1[w];
// do horizontal convolution, interleave the results and store them
for(x = 0; x <= w-4; x+=4) {
a = trow1[x+2], b = trow1[x+1], c = trow1[x+3], d = trow1[x+4],
e = trow0[x+2], f = trow0[x+3];
gxgy[drow++] = ( e - trow0[x] );
gxgy[drow++] = ( a + trow1[x] + b*2 );
gxgy[drow++] = ( f - trow0[x+1] );
gxgy[drow++] = ( c + b + a*2 );
gxgy[drow++] = ( trow0[x+4] - e );
gxgy[drow++] = ( d + a + c*2 );
gxgy[drow++] = ( trow0[x+5] - f );
gxgy[drow++] = ( trow1[x+5] + c + d*2 );
}
for(; x < w; ++x) {
gxgy[drow++] = ( trow0[x+2] - trow0[x] );
gxgy[drow++] = ( trow1[x+2] + trow1[x] + trow1[x+1]*2 );
}
}
jsfeat.cache.put_buffer(buf0_node);
jsfeat.cache.put_buffer(buf1_node);
},
// please note:
// dst_(type) size should be cols = src.cols+1, rows = src.rows+1
compute_integral_image: function(src, dst_sum, dst_sqsum, dst_tilted) {
var w0=src.cols|0,h0=src.rows|0,src_d=src.data;
var w1=(w0+1)|0;
var s=0,s2=0,p=0,pup=0,i=0,j=0,v=0,k=0;
if(dst_sum && dst_sqsum) {
// fill first row with zeros
for(; i < w1; ++i) {
dst_sum[i] = 0, dst_sqsum[i] = 0;
}
p = (w1+1)|0, pup = 1;
for(i = 0, k = 0; i < h0; ++i, ++p, ++pup) {
s = s2 = 0;
for(j = 0; j <= w0-2; j+=2, k+=2, p+=2, pup+=2) {
v = src_d[k];
s += v, s2 += v*v;
dst_sum[p] = dst_sum[pup] + s;
dst_sqsum[p] = dst_sqsum[pup] + s2;
v = src_d[k+1];
s += v, s2 += v*v;
dst_sum[p+1] = dst_sum[pup+1] + s;
dst_sqsum[p+1] = dst_sqsum[pup+1] + s2;
}
for(; j < w0; ++j, ++k, ++p, ++pup) {
v = src_d[k];
s += v, s2 += v*v;
dst_sum[p] = dst_sum[pup] + s;
dst_sqsum[p] = dst_sqsum[pup] + s2;
}
}
} else if(dst_sum) {
// fill first row with zeros
for(; i < w1; ++i) {
dst_sum[i] = 0;
}
p = (w1+1)|0, pup = 1;
for(i = 0, k = 0; i < h0; ++i, ++p, ++pup) {
s = 0;
for(j = 0; j <= w0-2; j+=2, k+=2, p+=2, pup+=2) {
s += src_d[k];
dst_sum[p] = dst_sum[pup] + s;
s += src_d[k+1];
dst_sum[p+1] = dst_sum[pup+1] + s;
}
for(; j < w0; ++j, ++k, ++p, ++pup) {
s += src_d[k];
dst_sum[p] = dst_sum[pup] + s;
}
}
} else if(dst_sqsum) {
// fill first row with zeros
for(; i < w1; ++i) {
dst_sqsum[i] = 0;
}
p = (w1+1)|0, pup = 1;
for(i = 0, k = 0; i < h0; ++i, ++p, ++pup) {
s2 = 0;
for(j = 0; j <= w0-2; j+=2, k+=2, p+=2, pup+=2) {
v = src_d[k];
s2 += v*v;
dst_sqsum[p] = dst_sqsum[pup] + s2;
v = src_d[k+1];
s2 += v*v;
dst_sqsum[p+1] = dst_sqsum[pup+1] + s2;
}
for(; j < w0; ++j, ++k, ++p, ++pup) {
v = src_d[k];
s2 += v*v;
dst_sqsum[p] = dst_sqsum[pup] + s2;
}
}
}
if(dst_tilted) {
// fill first row with zeros
for(i = 0; i < w1; ++i) {
dst_tilted[i] = 0;
}
// diagonal
p = (w1+1)|0, pup = 0;
for(i = 0, k = 0; i < h0; ++i, ++p, ++pup) {
for(j = 0; j <= w0-2; j+=2, k+=2, p+=2, pup+=2) {
dst_tilted[p] = src_d[k] + dst_tilted[pup];
dst_tilted[p+1] = src_d[k+1] + dst_tilted[pup+1];
}
for(; j < w0; ++j, ++k, ++p, ++pup) {
dst_tilted[p] = src_d[k] + dst_tilted[pup];
}
}
// diagonal
p = (w1+w0)|0, pup = w0;
for(i = 0; i < h0; ++i, p+=w1, pup+=w1) {
dst_tilted[p] += dst_tilted[pup];
}
for(j = w0-1; j > 0; --j) {
p = j+h0*w1, pup=p-w1;
for(i = h0; i > 0; --i, p-=w1, pup-=w1) {
dst_tilted[p] += dst_tilted[pup] + dst_tilted[pup+1];
}
}
}
},
equalize_histogram: function(src, dst) {
var w=src.cols,h=src.rows,src_d=src.data;
dst.resize(w, h, src.channel);
var dst_d=dst.data,size=w*h;
var i=0,prev=0,hist0,norm;
var hist0_node = jsfeat.cache.get_buffer(256<<2);
hist0 = hist0_node.i32;
for(; i < 256; ++i) hist0[i] = 0;
for (i = 0; i < size; ++i) {
++hist0[src_d[i]];
}
prev = hist0[0];
for (i = 1; i < 256; ++i) {
prev = hist0[i] += prev;
}
norm = 255 / size;
for (i = 0; i < size; ++i) {
dst_d[i] = (hist0[src_d[i]] * norm + 0.5)|0;
}
jsfeat.cache.put_buffer(hist0_node);
},
canny: function(src, dst, low_thresh, high_thresh) {
var w=src.cols,h=src.rows,src_d=src.data;
dst.resize(w, h, src.channel);
var dst_d=dst.data;
var i=0,j=0,grad=0,w2=w<<1,_grad=0,suppress=0,f=0,x=0,y=0,s=0;
var tg22x=0,tg67x=0;
// cache buffers
var dxdy_node = jsfeat.cache.get_buffer((h * w2)<<2);
var buf_node = jsfeat.cache.get_buffer((3 * (w + 2))<<2);
var map_node = jsfeat.cache.get_buffer(((h+2) * (w + 2))<<2);
var stack_node = jsfeat.cache.get_buffer((h * w)<<2);
var buf = buf_node.i32;
var map = map_node.i32;
var stack = stack_node.i32;
var dxdy = dxdy_node.i32;
var dxdy_m = new jsfeat.matrix_t(w, h, jsfeat.S32C2_t, dxdy_node.data);
var row0=1,row1=(w+2+1)|0,row2=(2*(w+2)+1)|0,map_w=(w+2)|0,map_i=(map_w+1)|0,stack_i=0;
this.sobel_derivatives(src, dxdy_m);
if(low_thresh > high_thresh) {
i = low_thresh;
low_thresh = high_thresh;
high_thresh = i;
}
i = (3 * (w + 2))|0;
while(--i>=0) {
buf[i] = 0;
}
i = ((h+2) * (w + 2))|0;
while(--i>=0) {
map[i] = 0;
}
for (; j < w; ++j, grad+=2) {
//buf[row1+j] = Math.abs(dxdy[grad]) + Math.abs(dxdy[grad+1]);
x = dxdy[grad], y = dxdy[grad+1];
//buf[row1+j] = x*x + y*y;
buf[row1+j] = ((x ^ (x >> 31)) - (x >> 31)) + ((y ^ (y >> 31)) - (y >> 31));
}
for(i=1; i <= h; ++i, grad+=w2) {
if(i == h) {
j = row2+w;
while(--j>=row2) {
buf[j] = 0;
}
} else {
for (j = 0; j < w; j++) {
//buf[row2+j] = Math.abs(dxdy[grad+(j<<1)]) + Math.abs(dxdy[grad+(j<<1)+1]);
x = dxdy[grad+(j<<1)], y = dxdy[grad+(j<<1)+1];
//buf[row2+j] = x*x + y*y;
buf[row2+j] = ((x ^ (x >> 31)) - (x >> 31)) + ((y ^ (y >> 31)) - (y >> 31));
}
}
_grad = (grad - w2)|0;
map[map_i-1] = 0;
suppress = 0;
for(j = 0; j < w; ++j, _grad+=2) {
f = buf[row1+j];
if (f > low_thresh) {
x = dxdy[_grad];
y = dxdy[_grad+1];
s = x ^ y;
// seems ot be faster than Math.abs
x = ((x ^ (x >> 31)) - (x >> 31))|0;
y = ((y ^ (y >> 31)) - (y >> 31))|0;
//x * tan(22.5) x * tan(67.5) == 2 * x + x * tan(22.5)
tg22x = x * 13573;
tg67x = tg22x + ((x + x) << 15);
y <<= 15;
if (y < tg22x) {
if (f > buf[row1+j-1] && f >= buf[row1+j+1]) {
if (f > high_thresh && !suppress && map[map_i+j-map_w] != 2) {
map[map_i+j] = 2;
suppress = 1;
stack[stack_i++] = map_i + j;
} else {
map[map_i+j] = 1;
}
continue;
}
} else if (y > tg67x) {
if (f > buf[row0+j] && f >= buf[row2+j]) {
if (f > high_thresh && !suppress && map[map_i+j-map_w] != 2) {
map[map_i+j] = 2;
suppress = 1;
stack[stack_i++] = map_i + j;
} else {
map[map_i+j] = 1;
}
continue;
}
} else {
s = s < 0 ? -1 : 1;
if (f > buf[row0+j-s] && f > buf[row2+j+s]) {
if (f > high_thresh && !suppress && map[map_i+j-map_w] != 2) {
map[map_i+j] = 2;
suppress = 1;
stack[stack_i++] = map_i + j;
} else {
map[map_i+j] = 1;
}
continue;
}
}
}
map[map_i+j] = 0;
suppress = 0;
}
map[map_i+w] = 0;
map_i += map_w;
j = row0;
row0 = row1;
row1 = row2;
row2 = j;
}
j = map_i - map_w - 1;
for(i = 0; i < map_w; ++i, ++j) {
map[j] = 0;
}
// path following
while(stack_i > 0) {
map_i = stack[--stack_i];
map_i -= map_w+1;
if(map[map_i] == 1) map[map_i] = 2, stack[stack_i++] = map_i;
map_i += 1;
if(map[map_i] == 1) map[map_i] = 2, stack[stack_i++] = map_i;
map_i += 1;
if(map[map_i] == 1) map[map_i] = 2, stack[stack_i++] = map_i;
map_i += map_w;
if(map[map_i] == 1) map[map_i] = 2, stack[stack_i++] = map_i;
map_i -= 2;
if(map[map_i] == 1) map[map_i] = 2, stack[stack_i++] = map_i;
map_i += map_w;
if(map[map_i] == 1) map[map_i] = 2, stack[stack_i++] = map_i;
map_i += 1;
if(map[map_i] == 1) map[map_i] = 2, stack[stack_i++] = map_i;
map_i += 1;
if(map[map_i] == 1) map[map_i] = 2, stack[stack_i++] = map_i;
}
map_i = map_w + 1;
row0 = 0;
for(i = 0; i < h; ++i, map_i+=map_w) {
for(j = 0; j < w; ++j) {
dst_d[row0++] = (map[map_i+j] == 2) * 0xff;
}
}
// free buffers
jsfeat.cache.put_buffer(dxdy_node);
jsfeat.cache.put_buffer(buf_node);
jsfeat.cache.put_buffer(map_node);
jsfeat.cache.put_buffer(stack_node);
},
// transform is 3x3 matrix_t
warp_perspective: function(src, dst, transform, fill_value) {
if (typeof fill_value === "undefined") { fill_value = 0; }
var src_width=src.cols|0, src_height=src.rows|0, dst_width=dst.cols|0, dst_height=dst.rows|0;
var src_d=src.data, dst_d=dst.data;
var x=0,y=0,off=0,ixs=0,iys=0,xs=0.0,ys=0.0,xs0=0.0,ys0=0.0,ws=0.0,sc=0.0,a=0.0,b=0.0,p0=0.0,p1=0.0;
var td=transform.data;
var m00=td[0],m01=td[1],m02=td[2],
m10=td[3],m11=td[4],m12=td[5],
m20=td[6],m21=td[7],m22=td[8];
for(var dptr = 0; y < dst_height; ++y) {
xs0 = m01 * y + m02,
ys0 = m11 * y + m12,
ws = m21 * y + m22;
for(x = 0; x < dst_width; ++x, ++dptr, xs0+=m00, ys0+=m10, ws+=m20) {
sc = 1.0 / ws;
xs = xs0 * sc, ys = ys0 * sc;
ixs = xs | 0, iys = ys | 0;
if(xs > 0 && ys > 0 && ixs < (src_width - 1) && iys < (src_height - 1)) {
a = Math.max(xs - ixs, 0.0);
b = Math.max(ys - iys, 0.0);
off = (src_width*iys + ixs)|0;
p0 = src_d[off] + a * (src_d[off+1] - src_d[off]);
p1 = src_d[off+src_width] + a * (src_d[off+src_width+1] - src_d[off+src_width]);
dst_d[dptr] = p0 + b * (p1 - p0);
}
else dst_d[dptr] = fill_value;
}
}
},
// transform is 3x3 or 2x3 matrix_t only first 6 values referenced
warp_affine: function(src, dst, transform, fill_value) {
if (typeof fill_value === "undefined") { fill_value = 0; }
var src_width=src.cols, src_height=src.rows, dst_width=dst.cols, dst_height=dst.rows;
var src_d=src.data, dst_d=dst.data;
var x=0,y=0,off=0,ixs=0,iys=0,xs=0.0,ys=0.0,a=0.0,b=0.0,p0=0.0,p1=0.0;
var td=transform.data;
var m00=td[0],m01=td[1],m02=td[2],
m10=td[3],m11=td[4],m12=td[5];
for(var dptr = 0; y < dst_height; ++y) {
xs = m01 * y + m02;
ys = m11 * y + m12;
for(x = 0; x < dst_width; ++x, ++dptr, xs+=m00, ys+=m10) {
ixs = xs | 0; iys = ys | 0;
if(ixs >= 0 && iys >= 0 && ixs < (src_width - 1) && iys < (src_height - 1)) {
a = xs - ixs;
b = ys - iys;
off = src_width*iys + ixs;
p0 = src_d[off] + a * (src_d[off+1] - src_d[off]);
p1 = src_d[off+src_width] + a * (src_d[off+src_width+1] - src_d[off+src_width]);
dst_d[dptr] = p0 + b * (p1 - p0);
}
else dst_d[dptr] = fill_value;
}
}
},
// Basic RGB Skin detection filter
// from http://popscan.blogspot.fr/2012/08/skin-detection-in-digital-images.html
skindetector: function(src,dst) {
var r,g,b,j;
var i = src.width*src.height;
while(i--){
j = i*4;
r = src.data[j];
g = src.data[j+1];
b = src.data[j+2];
if((r>95)&&(g>40)&&(b>20)
&&(r>g)&&(r>b)
&&(r-Math.min(g,b)>15)
&&(Math.abs(r-g)>15)){
dst[i] = 255;
} else {
dst[i] = 0;
}
}
}
};
})();
global.imgproc = imgproc;
})(jsfeat);
/**
* @author Eugene Zatepyakin / http://inspirit.ru/
*
* This is FAST corner detector, contributed to OpenCV by the author, Edward Rosten.
*/
/*
The references are:
* Machine learning for high-speed corner detection,
E. Rosten and T. Drummond, ECCV 2006
* Faster and better: A machine learning approach to corner detection
E. Rosten, R. Porter and T. Drummond, PAMI, 2009
*/
(function(global) {
"use strict";
//
var fast_corners = (function() {
var offsets16 = new Int32Array([0, 3, 1, 3, 2, 2, 3, 1, 3, 0, 3, -1, 2, -2, 1, -3, 0, -3, -1, -3, -2, -2, -3, -1, -3, 0, -3, 1, -2, 2, -1, 3]);
var threshold_tab = new Uint8Array(512);
var pixel_off = new Int32Array(25);
var score_diff = new Int32Array(25);
// private functions
var _cmp_offsets = function(pixel, step, pattern_size) {
var k = 0;
var offsets = offsets16;
for( ; k < pattern_size; ++k ) {
pixel[k] = offsets[k<<1] + offsets[(k<<1)+1] * step;
}
for( ; k < 25; ++k ) {
pixel[k] = pixel[k - pattern_size];
}
},
_cmp_score_16 = function(src, off, pixel, d, threshold) {
var N = 25, k = 0, v = src[off];
var a0 = threshold,a=0,b0=0,b=0;
for( ; k < N; ++k ) {
d[k] = v - src[off+pixel[k]];
}
for( k = 0; k < 16; k += 2 ) {
a = Math.min(d[k+1], d[k+2]);
a = Math.min(a, d[k+3]);
if( a <= a0 ) continue;
a = Math.min(a, d[k+4]);
a = Math.min(a, d[k+5]);
a = Math.min(a, d[k+6]);
a = Math.min(a, d[k+7]);
a = Math.min(a, d[k+8]);
a0 = Math.max(a0, Math.min(a, d[k]));
a0 = Math.max(a0, Math.min(a, d[k+9]));
}
b0 = -a0;
for( k = 0; k < 16; k += 2 ) {
b = Math.max(d[k+1], d[k+2]);
b = Math.max(b, d[k+3]);
b = Math.max(b, d[k+4]);
b = Math.max(b, d[k+5]);
if( b >= b0 ) continue;
b = Math.max(b, d[k+6]);
b = Math.max(b, d[k+7]);
b = Math.max(b, d[k+8]);
b0 = Math.min(b0, Math.max(b, d[k]));
b0 = Math.min(b0, Math.max(b, d[k+9]));
}
return -b0-1;
};
var _threshold = 20;
return {
set_threshold: function(threshold) {
_threshold = Math.min(Math.max(threshold, 0), 255);
for (var i = -255; i <= 255; ++i) {
threshold_tab[(i + 255)] = (i < -_threshold ? 1 : (i > _threshold ? 2 : 0));
}
return _threshold;
},
detect: function(src, corners, border) {
if (typeof border === "undefined") { border = 3; }
var K = 8, N = 25;
var img = src.data, w = src.cols, h = src.rows;
var i=0, j=0, k=0, vt=0, x=0, m3=0;
var buf_node = jsfeat.cache.get_buffer(3 * w);
var cpbuf_node = jsfeat.cache.get_buffer(((w+1)*3)<<2);
var buf = buf_node.u8;
var cpbuf = cpbuf_node.i32;
var pixel = pixel_off;
var sd = score_diff;
var sy = Math.max(3, border);
var ey = Math.min((h-2), (h-border));
var sx = Math.max(3, border);
var ex = Math.min((w - 3), (w - border));
var _count = 0, corners_cnt = 0, pt;
var score_func = _cmp_score_16;
var thresh_tab = threshold_tab;
var threshold = _threshold;
var v=0,tab=0,d=0,ncorners=0,cornerpos=0,curr=0,ptr=0,prev=0,pprev=0;
var jp1=0,jm1=0,score=0;
_cmp_offsets(pixel, w, 16);
// local vars are faster?
var pixel0 = pixel[0];
var pixel1 = pixel[1];
var pixel2 = pixel[2];
var pixel3 = pixel[3];
var pixel4 = pixel[4];
var pixel5 = pixel[5];
var pixel6 = pixel[6];
var pixel7 = pixel[7];
var pixel8 = pixel[8];
var pixel9 = pixel[9];
var pixel10 = pixel[10];
var pixel11 = pixel[11];
var pixel12 = pixel[12];
var pixel13 = pixel[13];
var pixel14 = pixel[14];
var pixel15 = pixel[15];
for(i = 0; i < w*3; ++i) {
buf[i] = 0;
}
for(i = sy; i < ey; ++i) {
ptr = ((i * w) + sx)|0;
m3 = (i - 3)%3;
curr = (m3*w)|0;
cornerpos = (m3*(w+1))|0;
for (j = 0; j < w; ++j) buf[curr+j] = 0;
ncorners = 0;
if( i < (ey - 1) ) {
j = sx;
for( ; j < ex; ++j, ++ptr ) {
v = img[ptr];
tab = ( - v + 255 );
d = ( thresh_tab[tab+img[ptr+pixel0]] | thresh_tab[tab+img[ptr+pixel8]] );
if( d == 0 ) {
continue;
}
d &= ( thresh_tab[tab+img[ptr+pixel2]] | thresh_tab[tab+img[ptr+pixel10]] );
d &= ( thresh_tab[tab+img[ptr+pixel4]] | thresh_tab[tab+img[ptr+pixel12]] );
d &= ( thresh_tab[tab+img[ptr+pixel6]] | thresh_tab[tab+img[ptr+pixel14]] );
if( d == 0 ) {
continue;
}
d &= ( thresh_tab[tab+img[ptr+pixel1]] | thresh_tab[tab+img[ptr+pixel9]] );
d &= ( thresh_tab[tab+img[ptr+pixel3]] | thresh_tab[tab+img[ptr+pixel11]] );
d &= ( thresh_tab[tab+img[ptr+pixel5]] | thresh_tab[tab+img[ptr+pixel13]] );
d &= ( thresh_tab[tab+img[ptr+pixel7]] | thresh_tab[tab+img[ptr+pixel15]] );
if( d & 1 ) {
vt = (v - threshold);
_count = 0;
for( k = 0; k < N; ++k ) {
x = img[(ptr+pixel[k])];
if(x < vt) {
++_count;
if( _count > K ) {
++ncorners;
cpbuf[cornerpos+ncorners] = j;
buf[curr+j] = score_func(img, ptr, pixel, sd, threshold);
break;
}
}
else {
_count = 0;
}
}
}
if( d & 2 ) {
vt = (v + threshold);
_count = 0;
for( k = 0; k < N; ++k ) {
x = img[(ptr+pixel[k])];
if(x > vt) {
++_count;
if( _count > K ) {
++ncorners;
cpbuf[cornerpos+ncorners] = j;
buf[curr+j] = score_func(img, ptr, pixel, sd, threshold);
break;
}
}
else {
_count = 0;
}
}
}
}
}
cpbuf[cornerpos+w] = ncorners;
if ( i == sy ) {
continue;
}
m3 = (i - 4 + 3)%3;
prev = (m3*w)|0;
cornerpos = (m3*(w+1))|0;
m3 = (i - 5 + 3)%3;
pprev = (m3*w)|0;
ncorners = cpbuf[cornerpos+w];
for( k = 0; k < ncorners; ++k ) {
j = cpbuf[cornerpos+k];
jp1 = (j+1)|0;
jm1 = (j-1)|0;
score = buf[prev+j];
if( (score > buf[prev+jp1] && score > buf[prev+jm1] &&
score > buf[pprev+jm1] && score > buf[pprev+j] && score > buf[pprev+jp1] &&
score > buf[curr+jm1] && score > buf[curr+j] && score > buf[curr+jp1]) ) {
// save corner
pt = corners[corners_cnt];
pt.x = j, pt.y = (i-1), pt.score = score;
corners_cnt++;
}
}
} // y loop
jsfeat.cache.put_buffer(buf_node);
jsfeat.cache.put_buffer(cpbuf_node);
return corners_cnt;
}
};
})();
global.fast_corners = fast_corners;
fast_corners.set_threshold(20); // set default
})(jsfeat);
/**
* @author Eugene Zatepyakin / http://inspirit.ru/
*
* Copyright 2007 Computer Vision Lab,
* Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland.
* @author Vincent Lepetit (http://cvlab.epfl.ch/~lepetit)
*/
(function(global) {
"use strict";
//
var yape06 = (function() {
var compute_laplacian = function(src, dst, w, h, Dxx, Dyy, sx,sy, ex,ey) {
var y=0,x=0,yrow=(sy*w+sx)|0,row=yrow;
for(y = sy; y < ey; ++y, yrow+=w, row = yrow) {
for(x = sx; x < ex; ++x, ++row) {
dst[row] = -4 * src[row] + src[row+Dxx] + src[row-Dxx] + src[row+Dyy] + src[row-Dyy];
}
}
}
var hessian_min_eigen_value = function(src, off, tr, Dxx, Dyy, Dxy, Dyx) {
var Ixx = -2 * src[off] + src[off + Dxx] + src[off - Dxx];
var Iyy = -2 * src[off] + src[off + Dyy] + src[off - Dyy];
var Ixy = src[off + Dxy] + src[off - Dxy] - src[off + Dyx] - src[off - Dyx];
var sqrt_delta = ( Math.sqrt(((Ixx - Iyy) * (Ixx - Iyy) + 4 * Ixy * Ixy) ) )|0;
return Math.min(Math.abs(tr - sqrt_delta), Math.abs(-(tr + sqrt_delta)));
}
return {
laplacian_threshold: 30,
min_eigen_value_threshold: 25,
detect: function(src, points, border) {
if (typeof border === "undefined") { border = 5; }
var x=0,y=0;
var w=src.cols, h=src.rows, srd_d=src.data;
var Dxx = 5, Dyy = (5 * w)|0;
var Dxy = (3 + 3 * w)|0, Dyx = (3 - 3 * w)|0;
var lap_buf = jsfeat.cache.get_buffer((w*h)<<2);
var laplacian = lap_buf.i32;
var lv=0, row=0,rowx=0,min_eigen_value=0,pt;
var number_of_points = 0;
var lap_thresh = this.laplacian_threshold;
var eigen_thresh = this.min_eigen_value_threshold;
var sx = Math.max(5, border)|0;
var sy = Math.max(3, border)|0;
var ex = Math.min(w-5, w-border)|0;
var ey = Math.min(h-3, h-border)|0;
x = w*h;
while(--x>=0) {laplacian[x]=0;}
compute_laplacian(srd_d, laplacian, w, h, Dxx, Dyy, sx,sy, ex,ey);
row = (sy*w+sx)|0;
for(y = sy; y < ey; ++y, row += w) {
for(x = sx, rowx=row; x < ex; ++x, ++rowx) {
lv = laplacian[rowx];
if ((lv < -lap_thresh &&
lv < laplacian[rowx - 1] && lv < laplacian[rowx + 1] &&
lv < laplacian[rowx - w] && lv < laplacian[rowx + w] &&
lv < laplacian[rowx - w - 1] && lv < laplacian[rowx + w - 1] &&
lv < laplacian[rowx - w + 1] && lv < laplacian[rowx + w + 1])
||
(lv > lap_thresh &&
lv > laplacian[rowx - 1] && lv > laplacian[rowx + 1] &&
lv > laplacian[rowx - w] && lv > laplacian[rowx + w] &&
lv > laplacian[rowx - w - 1] && lv > laplacian[rowx + w - 1] &&
lv > laplacian[rowx - w + 1] && lv > laplacian[rowx + w + 1])
) {
min_eigen_value = hessian_min_eigen_value(srd_d, rowx, lv, Dxx, Dyy, Dxy, Dyx);
if (min_eigen_value > eigen_thresh) {
pt = points[number_of_points];
pt.x = x, pt.y = y, pt.score = min_eigen_value;
++number_of_points;
++x, ++rowx; // skip next pixel since this is maxima in 3x3
}
}
}
}
jsfeat.cache.put_buffer(lap_buf);
return number_of_points;
}
};
})();
global.yape06 = yape06;
})(jsfeat);
/**
* @author Eugene Zatepyakin / http://inspirit.ru/
*
* Copyright 2007 Computer Vision Lab,
* Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland.
*/
(function(global) {
"use strict";
//
var yape = (function() {
var precompute_directions = function(step, dirs, R) {
var i = 0;
var x, y;
x = R;
for(y = 0; y < x; y++, i++)
{
x = (Math.sqrt((R * R - y * y)) + 0.5)|0;
dirs[i] = (x + step * y);
}
for(x-- ; x < y && x >= 0; x--, i++)
{
y = (Math.sqrt((R * R - x * x)) + 0.5)|0;
dirs[i] = (x + step * y);
}
for( ; -x < y; x--, i++)
{
y = (Math.sqrt((R * R - x * x)) + 0.5)|0;
dirs[i] = (x + step * y);
}
for(y-- ; y >= 0; y--, i++)
{
x = (-Math.sqrt((R * R - y * y)) - 0.5)|0;
dirs[i] = (x + step * y);
}
for(; y > x; y--, i++)
{
x = (-Math.sqrt((R * R - y * y)) - 0.5)|0;
dirs[i] = (x + step * y);
}
for(x++ ; x <= 0; x++, i++)
{
y = (-Math.sqrt((R * R - x * x)) - 0.5)|0;
dirs[i] = (x + step * y);
}
for( ; x < -y; x++, i++)
{
y = (-Math.sqrt((R * R - x * x)) - 0.5)|0;
dirs[i] = (x + step * y);
}
for(y++ ; y < 0; y++, i++)
{
x = (Math.sqrt((R * R - y * y)) + 0.5)|0;
dirs[i] = (x + step * y);
}
dirs[i] = dirs[0];
dirs[i + 1] = dirs[1];
return i;
}
var third_check = function (Sb, off, step) {
var n = 0;
if(Sb[off+1] != 0) n++;
if(Sb[off-1] != 0) n++;
if(Sb[off+step] != 0) n++;
if(Sb[off+step+1] != 0) n++;
if(Sb[off+step-1] != 0) n++;
if(Sb[off-step] != 0) n++;
if(Sb[off-step+1] != 0) n++;
if(Sb[off-step-1] != 0) n++;
return n;
}
var is_local_maxima = function(p, off, v, step, neighborhood) {
var x, y;
if (v > 0) {
off -= step*neighborhood;
for (y= -neighborhood; y<=neighborhood; ++y) {
for (x= -neighborhood; x<=neighborhood; ++x) {
if (p[off+x] > v) return false;
}
off += step;
}
} else {
off -= step*neighborhood;
for (y= -neighborhood; y<=neighborhood; ++y) {
for (x= -neighborhood; x<=neighborhood; ++x) {
if (p[off+x] < v) return false;
}
off += step;
}
}
return true;
}
var perform_one_point = function(I, x, Scores, Im, Ip, dirs, opposite, dirs_nb) {
var score = 0;
var a = 0, b = (opposite - 1)|0;
var A=0, B0=0, B1=0, B2=0;
var state=0;
// WE KNOW THAT NOT(A ~ I0 & B1 ~ I0):
A = I[x+dirs[a]];
if ((A <= Ip)) {
if ((A >= Im)) { // A ~ I0
B0 = I[x+dirs[b]];
if ((B0 <= Ip)) {
if ((B0 >= Im)) { Scores[x] = 0; return; }
else {
b++; B1 = I[x+dirs[b]];
if ((B1 > Ip)) {
b++; B2 = I[x+dirs[b]];
if ((B2 > Ip)) state = 3;
else if ((B2 < Im)) state = 6;
else { Scores[x] = 0; return; } // A ~ I0, B2 ~ I0
}
else/* if ((B1 < Im))*/ {
b++; B2 = I[x+dirs[b]];
if ((B2 > Ip)) state = 7;
else if ((B2 < Im)) state = 2;
else { Scores[x] = 0; return; } // A ~ I0, B2 ~ I0
}
//else { Scores[x] = 0; return; } // A ~ I0, B1 ~ I0
}
}
else { // B0 < I0
b++; B1 = I[x+dirs[b]];
if ((B1 > Ip)) {
b++; B2 = I[x+dirs[b]];
if ((B2 > Ip)) state = 3;
else if ((B2 < Im)) state = 6;
else { Scores[x] = 0; return; } // A ~ I0, B2 ~ I0
}
else if ((B1 < Im)) {
b++; B2 = I[x+dirs[b]];
if ((B2 > Ip)) state = 7;
else if ((B2 < Im)) state = 2;
else { Scores[x] = 0; return; } // A ~ I0, B2 ~ I0
}
else { Scores[x] = 0; return; } // A ~ I0, B1 ~ I0
}
}
else { // A > I0
B0 = I[x+dirs[b]];
if ((B0 > Ip)) { Scores[x] = 0; return; }
b++; B1 = I[x+dirs[b]];
if ((B1 > Ip)) { Scores[x] = 0; return; }
b++; B2 = I[x+dirs[b]];
if ((B2 > Ip)) { Scores[x] = 0; return; }
state = 1;
}
}
else // A < I0
{
B0 = I[x+dirs[b]];
if ((B0 < Im)) { Scores[x] = 0; return; }
b++; B1 = I[x+dirs[b]];
if ((B1 < Im)) { Scores[x] = 0; return; }
b++; B2 = I[x+dirs[b]];
if ((B2 < Im)) { Scores[x] = 0; return; }
state = 0;
}
for(a = 1; a <= opposite; a++)
{
A = I[x+dirs[a]];
switch(state)
{
case 0:
if ((A > Ip)) {
B1 = B2; b++; B2 = I[x+dirs[b]];
if ((B2 < Im)) { Scores[x] = 0; return; }
{ score -= A + B1; state = 0; break; };
}
if ((A < Im)) {
if ((B1 > Ip)) { Scores[x] = 0; return; }
if ((B2 > Ip)) { Scores[x] = 0; return; }
B1 = B2; b++; B2 = I[x+dirs[b]];
if ((B2 > Ip)) { Scores[x] = 0; return; }
{ score -= A + B1; state = 8; break; };
}
// A ~ I0
if ((B1 <= Ip)) { Scores[x] = 0; return; }
if ((B2 <= Ip)) { Scores[x] = 0; return; }
B1 = B2; b++; B2 = I[x+dirs[b]];
if ((B2 > Ip)) { score -= A + B1; state = 3; break; };
if ((B2 < Im)) { score -= A + B1; state = 6; break; };
{ Scores[x] = 0; return; }
case 1:
if ((A < Im)) {
B1 = B2; b++; B2 = I[x+dirs[b]];
if ((B2 > Ip)) { Scores[x] = 0; return; }
{ score -= A + B1; state = 1; break; };
}
if ((A > Ip)) {
if ((B1 < Im)) { Scores[x] = 0; return; }
if ((B2 < Im)) { Scores[x] = 0; return; }
B1 = B2; b++; B2 = I[x+dirs[b]];
if ((B2 < Im)) { Scores[x] = 0; return; }
{ score -= A + B1; state = 9; break; };
}
// A ~ I0
if ((B1 >= Im)) { Scores[x] = 0; return; }
if ((B2 >= Im)) { Scores[x] = 0; return; }
B1 = B2; b++; B2 = I[x+dirs[b]];
if ((B2 < Im)) { score -= A + B1; state = 2; break; };
if ((B2 > Ip)) { score -= A + B1; state = 7; break; };
{ Scores[x] = 0; return; }
case 2:
if ((A > Ip)) { Scores[x] = 0; return; }
B1 = B2; b++; B2 = I[x+dirs[b]];
if ((A < Im))
{
if ((B2 > Ip)) { Scores[x] = 0; return; }
{ score -= A + B1; state = 4; break; };
}
// A ~ I0
if ((B2 > Ip)) { score -= A + B1; state = 7; break; };
if ((B2 < Im)) { score -= A + B1; state = 2; break; };
{ Scores[x] = 0; return; } // A ~ I0, B2 ~ I0
case 3:
if ((A < Im)) { Scores[x] = 0; return; }
B1 = B2; b++; B2 = I[x+dirs[b]];
if ((A > Ip)) {
if ((B2 < Im)) { Scores[x] = 0; return; }
{ score -= A + B1; state = 5; break; };
}
// A ~ I0
if ((B2 > Ip)) { score -= A + B1; state = 3; break; };
if ((B2 < Im)) { score -= A + B1; state = 6; break; };
{ Scores[x] = 0; return; }
case 4:
if ((A > Ip)) { Scores[x] = 0; return; }
if ((A < Im)) {
B1 = B2; b++; B2 = I[x+dirs[b]];
if ((B2 > Ip)) { Scores[x] = 0; return; }
{ score -= A + B1; state = 1; break; };
}
if ((B2 >= Im)) { Scores[x] = 0; return; }
B1 = B2; b++; B2 = I[x+dirs[b]];
if ((B2 < Im)) { score -= A + B1; state = 2; break; };
if ((B2 > Ip)) { score -= A + B1; state = 7; break; };
{ Scores[x] = 0; return; }
case 5:
if ((A < Im)) { Scores[x] = 0; return; }
if ((A > Ip)) {
B1 = B2; b++; B2 = I[x+dirs[b]];
if ((B2 < Im)) { Scores[x] = 0; return; }
{ score -= A + B1; state = 0; break; };
}
// A ~ I0
if ((B2 <= Ip)) { Scores[x] = 0; return; }
B1 = B2; b++; B2 = I[x+dirs[b]];
if ((B2 > Ip)) { score -= A + B1; state = 3; break; };
if ((B2 < Im)) { score -= A + B1; state = 6; break; };
{ Scores[x] = 0; return; }
case 7:
if ((A > Ip)) { Scores[x] = 0; return; }
if ((A < Im)) { Scores[x] = 0; return; }
B1 = B2; b++; B2 = I[x+dirs[b]];
// A ~ I0
if ((B2 > Ip)) { score -= A + B1; state = 3; break; };
if ((B2 < Im)) { score -= A + B1; state = 6; break; };
{ Scores[x] = 0; return; } // A ~ I0, B2 ~ I0
case 6:
if ((A > Ip)) { Scores[x] = 0; return; }
if ((A < Im)) { Scores[x] = 0; return; }
B1 = B2; b++; B2 = I[x+dirs[b]];
// A ~ I0
if ((B2 < Im)) { score -= A + B1; state = 2; break; };
if ((B2 > Ip)) { score -= A + B1; state = 7; break; };
{ Scores[x] = 0; return; } // A ~ I0, B2 ~ I0
case 8:
if ((A > Ip)) {
if ((B2 < Im)) { Scores[x] = 0; return; }
B1 = B2; b++; B2 = I[x+dirs[b]];
if ((B2 < Im)) { Scores[x] = 0; return; }
{ score -= A + B1; state = 9; break; };
}
if ((A < Im)) {
B1 = B2; b++; B2 = I[x+dirs[b]];
if ((B2 > Ip)) { Scores[x] = 0; return; }
{ score -= A + B1; state = 1; break; };
}
{ Scores[x] = 0; return; }
case 9:
if ((A < Im)) {
if ((B2 > Ip)) { Scores[x] = 0; return; }
B1 = B2; b++; B2 = I[x+dirs[b]];
if ((B2 > Ip)) { Scores[x] = 0; return; }
{ score -= A + B1; state = 8; break; };
}
if ((A > Ip)) {
B1 = B2; b++; B2 = I[x+dirs[b]];
if ((B2 < Im)) { Scores[x] = 0; return; }
{ score -= A + B1; state = 0; break; };
}
{ Scores[x] = 0; return; }
default:
//"PB default";
break;
} // switch(state)
} // for(a...)
Scores[x] = (score + dirs_nb * I[x]);
}
var lev_table_t = (function () {
function lev_table_t(w, h, r) {
this.dirs = new Int32Array(1024);
this.dirs_count = precompute_directions(w, this.dirs, r)|0;
this.scores = new Int32Array(w*h);
this.radius = r|0;
}
return lev_table_t;
})();
return {
level_tables: [],
tau: 7,
init: function(width, height, radius, pyramid_levels) {
if (typeof pyramid_levels === "undefined") { pyramid_levels = 1; }
var i;
radius = Math.min(radius, 7);
radius = Math.max(radius, 3);
for(i = 0; i < pyramid_levels; ++i) {
this.level_tables[i] = new lev_table_t(width>>i, height>>i, radius);
}
},
detect: function(src, points, border) {
if (typeof border === "undefined") { border = 4; }
var t = this.level_tables[0];
var R = t.radius|0, Rm1 = (R-1)|0;
var dirs = t.dirs;
var dirs_count = t.dirs_count|0;
var opposite = dirs_count >> 1;
var img = src.data, w=src.cols|0, h=src.rows|0,hw=w>>1;
var scores = t.scores;
var x=0,y=0,row=0,rowx=0,ip=0,im=0,abs_score=0, score=0;
var tau = this.tau|0;
var number_of_points = 0, pt;
var sx = Math.max(R+1, border)|0;
var sy = Math.max(R+1, border)|0;
var ex = Math.min(w-R-2, w-border)|0;
var ey = Math.min(h-R-2, h-border)|0;
row = (sy*w+sx)|0;
for(y = sy; y < ey; ++y, row+=w) {
for(x = sx, rowx = row; x < ex; ++x, ++rowx) {
ip = img[rowx] + tau, im = img[rowx] - tau;
if (im<img[rowx+R] && img[rowx+R]<ip && im<img[rowx-R] && img[rowx-R]<ip) {
scores[rowx] = 0;
} else {
perform_one_point(img, rowx, scores, im, ip, dirs, opposite, dirs_count);
}
}
}
// local maxima
row = (sy*w+sx)|0;
for(y = sy; y < ey; ++y, row+=w) {
for(x = sx, rowx = row; x < ex; ++x, ++rowx) {
score = scores[rowx];
abs_score = Math.abs(score);
if(abs_score < 5) {
// if this pixel is 0, the next one will not be good enough. Skip it.
++x, ++rowx;
} else {
if(third_check(scores, rowx, w) >= 3 && is_local_maxima(scores, rowx, score, hw, R)) {
pt = points[number_of_points];
pt.x = x, pt.y = y, pt.score = abs_score;
++number_of_points;
x += Rm1, rowx += Rm1;
}
}
}
}
return number_of_points;
}
};
})();
global.yape = yape;
})(jsfeat);
/**
* @author Eugene Zatepyakin / http://inspirit.ru/
*
* Original implementation derived from OpenCV,
* @authors Ethan Rublee, Vincent Rabaud, Gary Bradski
*/
(function(global) {
"use strict";
//
var orb = (function() {
var bit_pattern_31_ = new Int32Array([
8,-3, 9,5/*mean (0), correlation (0)*/,
4,2, 7,-12/*mean (1.12461e-05), correlation (0.0437584)*/,
-11,9, -8,2/*mean (3.37382e-05), correlation (0.0617409)*/,
7,-12, 12,-13/*mean (5.62303e-05), correlation (0.0636977)*/,
2,-13, 2,12/*mean (0.000134953), correlation (0.085099)*/,
1,-7, 1,6/*mean (0.000528565), correlation (0.0857175)*/,
-2,-10, -2,-4/*mean (0.0188821), correlation (0.0985774)*/,
-13,-13, -11,-8/*mean (0.0363135), correlation (0.0899616)*/,
-13,-3, -12,-9/*mean (0.121806), correlation (0.099849)*/,
10,4, 11,9/*mean (0.122065), correlation (0.093285)*/,
-13,-8, -8,-9/*mean (0.162787), correlation (0.0942748)*/,
-11,7, -9,12/*mean (0.21561), correlation (0.0974438)*/,
7,7, 12,6/*mean (0.160583), correlation (0.130064)*/,
-4,-5, -3,0/*mean (0.228171), correlation (0.132998)*/,
-13,2, -12,-3/*mean (0.00997526), correlation (0.145926)*/,
-9,0, -7,5/*mean (0.198234), correlation (0.143636)*/,
12,-6, 12,-1/*mean (0.0676226), correlation (0.16689)*/,
-3,6, -2,12/*mean (0.166847), correlation (0.171682)*/,
-6,-13, -4,-8/*mean (0.101215), correlation (0.179716)*/,
11,-13, 12,-8/*mean (0.200641), correlation (0.192279)*/,
4,7, 5,1/*mean (0.205106), correlation (0.186848)*/,
5,-3, 10,-3/*mean (0.234908), correlation (0.192319)*/,
3,-7, 6,12/*mean (0.0709964), correlation (0.210872)*/,
-8,-7, -6,-2/*mean (0.0939834), correlation (0.212589)*/,
-2,11, -1,-10/*mean (0.127778), correlation (0.20866)*/,
-13,12, -8,10/*mean (0.14783), correlation (0.206356)*/,
-7,3, -5,-3/*mean (0.182141), correlation (0.198942)*/,
-4,2, -3,7/*mean (0.188237), correlation (0.21384)*/,
-10,-12, -6,11/*mean (0.14865), correlation (0.23571)*/,
5,-12, 6,-7/*mean (0.222312), correlation (0.23324)*/,
5,-6, 7,-1/*mean (0.229082), correlation (0.23389)*/,
1,0, 4,-5/*mean (0.241577), correlation (0.215286)*/,
9,11, 11,-13/*mean (0.00338507), correlation (0.251373)*/,
4,7, 4,12/*mean (0.131005), correlation (0.257622)*/,
2,-1, 4,4/*mean (0.152755), correlation (0.255205)*/,
-4,-12, -2,7/*mean (0.182771), correlation (0.244867)*/,
-8,-5, -7,-10/*mean (0.186898), correlation (0.23901)*/,
4,11, 9,12/*mean (0.226226), correlation (0.258255)*/,
0,-8, 1,-13/*mean (0.0897886), correlation (0.274827)*/,
-13,-2, -8,2/*mean (0.148774), correlation (0.28065)*/,
-3,-2, -2,3/*mean (0.153048), correlation (0.283063)*/,
-6,9, -4,-9/*mean (0.169523), correlation (0.278248)*/,
8,12, 10,7/*mean (0.225337), correlation (0.282851)*/,
0,9, 1,3/*mean (0.226687), correlation (0.278734)*/,
7,-5, 11,-10/*mean (0.00693882), correlation (0.305161)*/,
-13,-6, -11,0/*mean (0.0227283), correlation (0.300181)*/,
10,7, 12,1/*mean (0.125517), correlation (0.31089)*/,
-6,-3, -6,12/*mean (0.131748), correlation (0.312779)*/,
10,-9, 12,-4/*mean (0.144827), correlation (0.292797)*/,
-13,8, -8,-12/*mean (0.149202), correlation (0.308918)*/,
-13,0, -8,-4/*mean (0.160909), correlation (0.310013)*/,
3,3, 7,8/*mean (0.177755), correlation (0.309394)*/,
5,7, 10,-7/*mean (0.212337), correlation (0.310315)*/,
-1,7, 1,-12/*mean (0.214429), correlation (0.311933)*/,
3,-10, 5,6/*mean (0.235807), correlation (0.313104)*/,
2,-4, 3,-10/*mean (0.00494827), correlation (0.344948)*/,
-13,0, -13,5/*mean (0.0549145), correlation (0.344675)*/,
-13,-7, -12,12/*mean (0.103385), correlation (0.342715)*/,
-13,3, -11,8/*mean (0.134222), correlation (0.322922)*/,
-7,12, -4,7/*mean (0.153284), correlation (0.337061)*/,
6,-10, 12,8/*mean (0.154881), correlation (0.329257)*/,
-9,-1, -7,-6/*mean (0.200967), correlation (0.33312)*/,
-2,-5, 0,12/*mean (0.201518), correlation (0.340635)*/,
-12,5, -7,5/*mean (0.207805), correlation (0.335631)*/,
3,-10, 8,-13/*mean (0.224438), correlation (0.34504)*/,
-7,-7, -4,5/*mean (0.239361), correlation (0.338053)*/,
-3,-2, -1,-7/*mean (0.240744), correlation (0.344322)*/,
2,9, 5,-11/*mean (0.242949), correlation (0.34145)*/,
-11,-13, -5,-13/*mean (0.244028), correlation (0.336861)*/,
-1,6, 0,-1/*mean (0.247571), correlation (0.343684)*/,
5,-3, 5,2/*mean (0.000697256), correlation (0.357265)*/,
-4,-13, -4,12/*mean (0.00213675), correlation (0.373827)*/,
-9,-6, -9,6/*mean (0.0126856), correlation (0.373938)*/,
-12,-10, -8,-4/*mean (0.0152497), correlation (0.364237)*/,
10,2, 12,-3/*mean (0.0299933), correlation (0.345292)*/,
7,12, 12,12/*mean (0.0307242), correlation (0.366299)*/,
-7,-13, -6,5/*mean (0.0534975), correlation (0.368357)*/,
-4,9, -3,4/*mean (0.099865), correlation (0.372276)*/,
7,-1, 12,2/*mean (0.117083), correlation (0.364529)*/,
-7,6, -5,1/*mean (0.126125), correlation (0.369606)*/,
-13,11, -12,5/*mean (0.130364), correlation (0.358502)*/,
-3,7, -2,-6/*mean (0.131691), correlation (0.375531)*/,
7,-8, 12,-7/*mean (0.160166), correlation (0.379508)*/,
-13,-7, -11,-12/*mean (0.167848), correlation (0.353343)*/,
1,-3, 12,12/*mean (0.183378), correlation (0.371916)*/,
2,-6, 3,0/*mean (0.228711), correlation (0.371761)*/,
-4,3, -2,-13/*mean (0.247211), correlation (0.364063)*/,
-1,-13, 1,9/*mean (0.249325), correlation (0.378139)*/,
7,1, 8,-6/*mean (0.000652272), correlation (0.411682)*/,
1,-1, 3,12/*mean (0.00248538), correlation (0.392988)*/,
9,1, 12,6/*mean (0.0206815), correlation (0.386106)*/,
-1,-9, -1,3/*mean (0.0364485), correlation (0.410752)*/,
-13,-13, -10,5/*mean (0.0376068), correlation (0.398374)*/,
7,7, 10,12/*mean (0.0424202), correlation (0.405663)*/,
12,-5, 12,9/*mean (0.0942645), correlation (0.410422)*/,
6,3, 7,11/*mean (0.1074), correlation (0.413224)*/,
5,-13, 6,10/*mean (0.109256), correlation (0.408646)*/,
2,-12, 2,3/*mean (0.131691), correlation (0.416076)*/,
3,8, 4,-6/*mean (0.165081), correlation (0.417569)*/,
2,6, 12,-13/*mean (0.171874), correlation (0.408471)*/,
9,-12, 10,3/*mean (0.175146), correlation (0.41296)*/,
-8,4, -7,9/*mean (0.183682), correlation (0.402956)*/,
-11,12, -4,-6/*mean (0.184672), correlation (0.416125)*/,
1,12, 2,-8/*mean (0.191487), correlation (0.386696)*/,
6,-9, 7,-4/*mean (0.192668), correlation (0.394771)*/,
2,3, 3,-2/*mean (0.200157), correlation (0.408303)*/,
6,3, 11,0/*mean (0.204588), correlation (0.411762)*/,
3,-3, 8,-8/*mean (0.205904), correlation (0.416294)*/,
7,8, 9,3/*mean (0.213237), correlation (0.409306)*/,
-11,-5, -6,-4/*mean (0.243444), correlation (0.395069)*/,
-10,11, -5,10/*mean (0.247672), correlation (0.413392)*/,
-5,-8, -3,12/*mean (0.24774), correlation (0.411416)*/,
-10,5, -9,0/*mean (0.00213675), correlation (0.454003)*/,
8,-1, 12,-6/*mean (0.0293635), correlation (0.455368)*/,
4,-6, 6,-11/*mean (0.0404971), correlation (0.457393)*/,
-10,12, -8,7/*mean (0.0481107), correlation (0.448364)*/,
4,-2, 6,7/*mean (0.050641), correlation (0.455019)*/,
-2,0, -2,12/*mean (0.0525978), correlation (0.44338)*/,
-5,-8, -5,2/*mean (0.0629667), correlation (0.457096)*/,
7,-6, 10,12/*mean (0.0653846), correlation (0.445623)*/,
-9,-13, -8,-8/*mean (0.0858749), correlation (0.449789)*/,
-5,-13, -5,-2/*mean (0.122402), correlation (0.450201)*/,
8,-8, 9,-13/*mean (0.125416), correlation (0.453224)*/,
-9,-11, -9,0/*mean (0.130128), correlation (0.458724)*/,
1,-8, 1,-2/*mean (0.132467), correlation (0.440133)*/,
7,-4, 9,1/*mean (0.132692), correlation (0.454)*/,
-2,1, -1,-4/*mean (0.135695), correlation (0.455739)*/,
11,-6, 12,-11/*mean (0.142904), correlation (0.446114)*/,
-12,-9, -6,4/*mean (0.146165), correlation (0.451473)*/,
3,7, 7,12/*mean (0.147627), correlation (0.456643)*/,
5,5, 10,8/*mean (0.152901), correlation (0.455036)*/,
0,-4, 2,8/*mean (0.167083), correlation (0.459315)*/,
-9,12, -5,-13/*mean (0.173234), correlation (0.454706)*/,
0,7, 2,12/*mean (0.18312), correlation (0.433855)*/,
-1,2, 1,7/*mean (0.185504), correlation (0.443838)*/,
5,11, 7,-9/*mean (0.185706), correlation (0.451123)*/,
3,5, 6,-8/*mean (0.188968), correlation (0.455808)*/,
-13,-4, -8,9/*mean (0.191667), correlation (0.459128)*/,
-5,9, -3,-3/*mean (0.193196), correlation (0.458364)*/,
-4,-7, -3,-12/*mean (0.196536), correlation (0.455782)*/,
6,5, 8,0/*mean (0.1972), correlation (0.450481)*/,
-7,6, -6,12/*mean (0.199438), correlation (0.458156)*/,
-13,6, -5,-2/*mean (0.211224), correlation (0.449548)*/,
1,-10, 3,10/*mean (0.211718), correlation (0.440606)*/,
4,1, 8,-4/*mean (0.213034), correlation (0.443177)*/,
-2,-2, 2,-13/*mean (0.234334), correlation (0.455304)*/,
2,-12, 12,12/*mean (0.235684), correlation (0.443436)*/,
-2,-13, 0,-6/*mean (0.237674), correlation (0.452525)*/,
4,1, 9,3/*mean (0.23962), correlation (0.444824)*/,
-6,-10, -3,-5/*mean (0.248459), correlation (0.439621)*/,
-3,-13, -1,1/*mean (0.249505), correlation (0.456666)*/,
7,5, 12,-11/*mean (0.00119208), correlation (0.495466)*/,
4,-2, 5,-7/*mean (0.00372245), correlation (0.484214)*/,
-13,9, -9,-5/*mean (0.00741116), correlation (0.499854)*/,
7,1, 8,6/*mean (0.0208952), correlation (0.499773)*/,
7,-8, 7,6/*mean (0.0220085), correlation (0.501609)*/,
-7,-4, -7,1/*mean (0.0233806), correlation (0.496568)*/,
-8,11, -7,-8/*mean (0.0236505), correlation (0.489719)*/,
-13,6, -12,-8/*mean (0.0268781), correlation (0.503487)*/,
2,4, 3,9/*mean (0.0323324), correlation (0.501938)*/,
10,-5, 12,3/*mean (0.0399235), correlation (0.494029)*/,
-6,-5, -6,7/*mean (0.0420153), correlation (0.486579)*/,
8,-3, 9,-8/*mean (0.0548021), correlation (0.484237)*/,
2,-12, 2,8/*mean (0.0616622), correlation (0.496642)*/,
-11,-2, -10,3/*mean (0.0627755), correlation (0.498563)*/,
-12,-13, -7,-9/*mean (0.0829622), correlation (0.495491)*/,
-11,0, -10,-5/*mean (0.0843342), correlation (0.487146)*/,
5,-3, 11,8/*mean (0.0929937), correlation (0.502315)*/,
-2,-13, -1,12/*mean (0.113327), correlation (0.48941)*/,
-1,-8, 0,9/*mean (0.132119), correlation (0.467268)*/,
-13,-11, -12,-5/*mean (0.136269), correlation (0.498771)*/,
-10,-2, -10,11/*mean (0.142173), correlation (0.498714)*/,
-3,9, -2,-13/*mean (0.144141), correlation (0.491973)*/,
2,-3, 3,2/*mean (0.14892), correlation (0.500782)*/,
-9,-13, -4,0/*mean (0.150371), correlation (0.498211)*/,
-4,6, -3,-10/*mean (0.152159), correlation (0.495547)*/,
-4,12, -2,-7/*mean (0.156152), correlation (0.496925)*/,
-6,-11, -4,9/*mean (0.15749), correlation (0.499222)*/,
6,-3, 6,11/*mean (0.159211), correlation (0.503821)*/,
-13,11, -5,5/*mean (0.162427), correlation (0.501907)*/,
11,11, 12,6/*mean (0.16652), correlation (0.497632)*/,
7,-5, 12,-2/*mean (0.169141), correlation (0.484474)*/,
-1,12, 0,7/*mean (0.169456), correlation (0.495339)*/,
-4,-8, -3,-2/*mean (0.171457), correlation (0.487251)*/,
-7,1, -6,7/*mean (0.175), correlation (0.500024)*/,
-13,-12, -8,-13/*mean (0.175866), correlation (0.497523)*/,
-7,-2, -6,-8/*mean (0.178273), correlation (0.501854)*/,
-8,5, -6,-9/*mean (0.181107), correlation (0.494888)*/,
-5,-1, -4,5/*mean (0.190227), correlation (0.482557)*/,
-13,7, -8,10/*mean (0.196739), correlation (0.496503)*/,
1,5, 5,-13/*mean (0.19973), correlation (0.499759)*/,
1,0, 10,-13/*mean (0.204465), correlation (0.49873)*/,
9,12, 10,-1/*mean (0.209334), correlation (0.49063)*/,
5,-8, 10,-9/*mean (0.211134), correlation (0.503011)*/,
-1,11, 1,-13/*mean (0.212), correlation (0.499414)*/,
-9,-3, -6,2/*mean (0.212168), correlation (0.480739)*/,
-1,-10, 1,12/*mean (0.212731), correlation (0.502523)*/,
-13,1, -8,-10/*mean (0.21327), correlation (0.489786)*/,
8,-11, 10,-6/*mean (0.214159), correlation (0.488246)*/,
2,-13, 3,-6/*mean (0.216993), correlation (0.50287)*/,
7,-13, 12,-9/*mean (0.223639), correlation (0.470502)*/,
-10,-10, -5,-7/*mean (0.224089), correlation (0.500852)*/,
-10,-8, -8,-13/*mean (0.228666), correlation (0.502629)*/,
4,-6, 8,5/*mean (0.22906), correlation (0.498305)*/,
3,12, 8,-13/*mean (0.233378), correlation (0.503825)*/,
-4,2, -3,-3/*mean (0.234323), correlation (0.476692)*/,
5,-13, 10,-12/*mean (0.236392), correlation (0.475462)*/,
4,-13, 5,-1/*mean (0.236842), correlation (0.504132)*/,
-9,9, -4,3/*mean (0.236977), correlation (0.497739)*/,
0,3, 3,-9/*mean (0.24314), correlation (0.499398)*/,
-12,1, -6,1/*mean (0.243297), correlation (0.489447)*/,
3,2, 4,-8/*mean (0.00155196), correlation (0.553496)*/,
-10,-10, -10,9/*mean (0.00239541), correlation (0.54297)*/,
8,-13, 12,12/*mean (0.0034413), correlation (0.544361)*/,
-8,-12, -6,-5/*mean (0.003565), correlation (0.551225)*/,
2,2, 3,7/*mean (0.00835583), correlation (0.55285)*/,
10,6, 11,-8/*mean (0.00885065), correlation (0.540913)*/,
6,8, 8,-12/*mean (0.0101552), correlation (0.551085)*/,
-7,10, -6,5/*mean (0.0102227), correlation (0.533635)*/,
-3,-9, -3,9/*mean (0.0110211), correlation (0.543121)*/,
-1,-13, -1,5/*mean (0.0113473), correlation (0.550173)*/,
-3,-7, -3,4/*mean (0.0140913), correlation (0.554774)*/,
-8,-2, -8,3/*mean (0.017049), correlation (0.55461)*/,
4,2, 12,12/*mean (0.01778), correlation (0.546921)*/,
2,-5, 3,11/*mean (0.0224022), correlation (0.549667)*/,
6,-9, 11,-13/*mean (0.029161), correlation (0.546295)*/,
3,-1, 7,12/*mean (0.0303081), correlation (0.548599)*/,
11,-1, 12,4/*mean (0.0355151), correlation (0.523943)*/,
-3,0, -3,6/*mean (0.0417904), correlation (0.543395)*/,
4,-11, 4,12/*mean (0.0487292), correlation (0.542818)*/,
2,-4, 2,1/*mean (0.0575124), correlation (0.554888)*/,
-10,-6, -8,1/*mean (0.0594242), correlation (0.544026)*/,
-13,7, -11,1/*mean (0.0597391), correlation (0.550524)*/,
-13,12, -11,-13/*mean (0.0608974), correlation (0.55383)*/,
6,0, 11,-13/*mean (0.065126), correlation (0.552006)*/,
0,-1, 1,4/*mean (0.074224), correlation (0.546372)*/,
-13,3, -9,-2/*mean (0.0808592), correlation (0.554875)*/,
-9,8, -6,-3/*mean (0.0883378), correlation (0.551178)*/,
-13,-6, -8,-2/*mean (0.0901035), correlation (0.548446)*/,
5,-9, 8,10/*mean (0.0949843), correlation (0.554694)*/,
2,7, 3,-9/*mean (0.0994152), correlation (0.550979)*/,
-1,-6, -1,-1/*mean (0.10045), correlation (0.552714)*/,
9,5, 11,-2/*mean (0.100686), correlation (0.552594)*/,
11,-3, 12,-8/*mean (0.101091), correlation (0.532394)*/,
3,0, 3,5/*mean (0.101147), correlation (0.525576)*/,
-1,4, 0,10/*mean (0.105263), correlation (0.531498)*/,
3,-6, 4,5/*mean (0.110785), correlation (0.540491)*/,
-13,0, -10,5/*mean (0.112798), correlation (0.536582)*/,
5,8, 12,11/*mean (0.114181), correlation (0.555793)*/,
8,9, 9,-6/*mean (0.117431), correlation (0.553763)*/,
7,-4, 8,-12/*mean (0.118522), correlation (0.553452)*/,
-10,4, -10,9/*mean (0.12094), correlation (0.554785)*/,
7,3, 12,4/*mean (0.122582), correlation (0.555825)*/,
9,-7, 10,-2/*mean (0.124978), correlation (0.549846)*/,
7,0, 12,-2/*mean (0.127002), correlation (0.537452)*/,
-1,-6, 0,-11/*mean (0.127148), correlation (0.547401)*/
]);
var H = new jsfeat.matrix_t(3, 3, jsfeat.F32_t|jsfeat.C1_t);
var patch_img = new jsfeat.matrix_t(32, 32, jsfeat.U8_t|jsfeat.C1_t);
var rectify_patch = function(src, dst, angle, px, py, psize) {
var cosine = Math.cos(angle);
var sine = Math.sin(angle);
H.data[0] = cosine, H.data[1] = -sine, H.data[2] = (-cosine + sine ) * psize*0.5 + px,
H.data[3] = sine, H.data[4] = cosine, H.data[5] = (-sine - cosine) * psize*0.5 + py;
jsfeat.imgproc.warp_affine(src, dst, H, 128);
}
return {
describe: function(src, corners, count, descriptors) {
var DESCR_SIZE = 32; // bytes;
var i=0,b=0,px=0.0,py=0.0,angle=0.0;
var t0=0, t1=0, val=0;
var img = src.data, w = src.cols, h = src.rows;
var patch_d = patch_img.data;
var patch_off = 16*32 + 16; // center of patch
var patt=0;
if(!(descriptors.type&jsfeat.U8_t)) {
// relocate to U8 type
descriptors.type = jsfeat.U8_t;
descriptors.cols = DESCR_SIZE;
descriptors.rows = count;
descriptors.channel = 1;
descriptors.allocate();
} else {
descriptors.resize(DESCR_SIZE, count, 1);
}
var descr_d = descriptors.data;
var descr_off = 0;
for(i = 0; i < count; ++i) {
px = corners[i].x;
py = corners[i].y;
angle = corners[i].angle;
rectify_patch(src, patch_img, angle, px, py, 32);
// describe the patch
patt = 0;
for (b = 0; b < DESCR_SIZE; ++b) {
t0 = patch_d[patch_off + bit_pattern_31_[patt+1] * 32 + bit_pattern_31_[patt]]; patt += 2
t1 = patch_d[patch_off + bit_pattern_31_[patt+1] * 32 + bit_pattern_31_[patt]]; patt += 2
val = (t0 < t1)|0;
t0 = patch_d[patch_off + bit_pattern_31_[patt+1] * 32 + bit_pattern_31_[patt]]; patt += 2
t1 = patch_d[patch_off + bit_pattern_31_[patt+1] * 32 + bit_pattern_31_[patt]]; patt += 2
val |= (t0 < t1) << 1;
t0 = patch_d[patch_off + bit_pattern_31_[patt+1] * 32 + bit_pattern_31_[patt]]; patt += 2
t1 = patch_d[patch_off + bit_pattern_31_[patt+1] * 32 + bit_pattern_31_[patt]]; patt += 2
val |= (t0 < t1) << 2;
t0 = patch_d[patch_off + bit_pattern_31_[patt+1] * 32 + bit_pattern_31_[patt]]; patt += 2
t1 = patch_d[patch_off + bit_pattern_31_[patt+1] * 32 + bit_pattern_31_[patt]]; patt += 2
val |= (t0 < t1) << 3;
t0 = patch_d[patch_off + bit_pattern_31_[patt+1] * 32 + bit_pattern_31_[patt]]; patt += 2
t1 = patch_d[patch_off + bit_pattern_31_[patt+1] * 32 + bit_pattern_31_[patt]]; patt += 2
val |= (t0 < t1) << 4;
t0 = patch_d[patch_off + bit_pattern_31_[patt+1] * 32 + bit_pattern_31_[patt]]; patt += 2
t1 = patch_d[patch_off + bit_pattern_31_[patt+1] * 32 + bit_pattern_31_[patt]]; patt += 2
val |= (t0 < t1) << 5;
t0 = patch_d[patch_off + bit_pattern_31_[patt+1] * 32 + bit_pattern_31_[patt]]; patt += 2
t1 = patch_d[patch_off + bit_pattern_31_[patt+1] * 32 + bit_pattern_31_[patt]]; patt += 2
val |= (t0 < t1) << 6;
t0 = patch_d[patch_off + bit_pattern_31_[patt+1] * 32 + bit_pattern_31_[patt]]; patt += 2
t1 = patch_d[patch_off + bit_pattern_31_[patt+1] * 32 + bit_pattern_31_[patt]]; patt += 2
val |= (t0 < t1) << 7;
descr_d[descr_off+b] = val;
}
descr_off += DESCR_SIZE;
}
}
};
})();
global.orb = orb;
})(jsfeat);
/**
* @author Eugene Zatepyakin / http://inspirit.ru/
*
* this code is a rewrite from OpenCV's Lucas-Kanade optical flow implementation
*/
(function(global) {
"use strict";
//
var optical_flow_lk = (function() {
// short link to shar deriv
var scharr_deriv = jsfeat.imgproc.scharr_derivatives;
return {
track: function(prev_pyr, curr_pyr, prev_xy, curr_xy, count, win_size, max_iter, status, eps, min_eigen_threshold) {
if (typeof max_iter === "undefined") { max_iter = 30; }
if (typeof status === "undefined") { status = new Uint8Array(count); }
if (typeof eps === "undefined") { eps = 0.01; }
if (typeof min_eigen_threshold === "undefined") { min_eigen_threshold = 0.0001; }
var half_win = (win_size-1)*0.5;
var win_area = (win_size*win_size)|0;
var win_area2 = win_area << 1;
var prev_imgs = prev_pyr.data, next_imgs = curr_pyr.data;
var img_prev=prev_imgs[0].data,img_next=next_imgs[0].data;
var w0 = prev_imgs[0].cols, h0 = prev_imgs[0].rows,lw=0,lh=0;
var iwin_node = jsfeat.cache.get_buffer(win_area<<2);
var deriv_iwin_node = jsfeat.cache.get_buffer(win_area2<<2);
var deriv_lev_node = jsfeat.cache.get_buffer((h0*(w0<<1))<<2);
var deriv_m = new jsfeat.matrix_t(w0, h0, jsfeat.S32C2_t, deriv_lev_node.data);
var iwin_buf = iwin_node.i32;
var deriv_iwin = deriv_iwin_node.i32;
var deriv_lev = deriv_lev_node.i32;
var dstep=0,src=0,dsrc=0,iptr=0,diptr=0,jptr=0;
var lev_sc=0.0,prev_x=0.0,prev_y=0.0,next_x=0.0,next_y=0.0;
var prev_delta_x=0.0,prev_delta_y=0.0,delta_x=0.0,delta_y=0.0;
var iprev_x=0,iprev_y=0,inext_x=0,inext_y=0;
var i=0,j=0,x=0,y=0,level=0,ptid=0,iter=0;
var brd_tl=0,brd_r=0,brd_b=0;
var a=0.0,b=0.0,b1=0.0,b2=0.0;
// fixed point math
var W_BITS14 = 14;
var W_BITS4 = 14;
var W_BITS1m5 = W_BITS4 - 5;
var W_BITS1m51 = (1 << ((W_BITS1m5) - 1));
var W_BITS14_ = (1 << W_BITS14);
var W_BITS41 = (1 << ((W_BITS4) - 1));
var FLT_SCALE = 1.0/(1 << 20);
var iw00=0,iw01=0,iw10=0,iw11=0,ival=0,ixval=0,iyval=0;
var A11=0.0,A12=0.0,A22=0.0,D=0.0,min_eig=0.0;
var FLT_EPSILON = 0.00000011920929;
eps *= eps;
// reset status
for(; i < count; ++i) {
status[i] = 1;
}
var max_level = (prev_pyr.levels - 1)|0;
level = max_level;
for(; level >= 0; --level) {
lev_sc = (1.0/(1 << level));
lw = w0 >> level;
lh = h0 >> level;
dstep = lw << 1;
img_prev = prev_imgs[level].data;
img_next = next_imgs[level].data;
brd_r = (lw - win_size)|0;
brd_b = (lh - win_size)|0;
// calculate level derivatives
scharr_deriv(prev_imgs[level], deriv_m);
// iterate through points
for(ptid = 0; ptid < count; ++ptid) {
i = ptid << 1;
j = i + 1;
prev_x = prev_xy[i]*lev_sc;
prev_y = prev_xy[j]*lev_sc;
if( level == max_level ) {
next_x = prev_x;
next_y = prev_y;
} else {
next_x = curr_xy[i]*2.0;
next_y = curr_xy[j]*2.0;
}
curr_xy[i] = next_x;
curr_xy[j] = next_y;
prev_x -= half_win;
prev_y -= half_win;
iprev_x = prev_x|0;
iprev_y = prev_y|0;
// border check
x = (iprev_x <= brd_tl)|(iprev_x >= brd_r)|(iprev_y <= brd_tl)|(iprev_y >= brd_b);
if( x != 0 ) {
if( level == 0 ) {
status[ptid] = 0;
}
continue;
}
a = prev_x - iprev_x;
b = prev_y - iprev_y;
iw00 = (((1.0 - a)*(1.0 - b)*W_BITS14_) + 0.5)|0;
iw01 = ((a*(1.0 - b)*W_BITS14_) + 0.5)|0;
iw10 = (((1.0 - a)*b*W_BITS14_) + 0.5)|0;
iw11 = (W_BITS14_ - iw00 - iw01 - iw10);
A11 = 0.0, A12 = 0.0, A22 = 0.0;
// extract the patch from the first image, compute covariation matrix of derivatives
for( y = 0; y < win_size; ++y ) {
src = ( (y + iprev_y)*lw + iprev_x )|0;
dsrc = src << 1;
iptr = (y*win_size)|0;
diptr = iptr << 1;
for(x = 0 ; x < win_size; ++x, ++src, ++iptr, dsrc += 2) {
ival = ( (img_prev[src])*iw00 + (img_prev[src+1])*iw01 +
(img_prev[src+lw])*iw10 + (img_prev[src+lw+1])*iw11 );
ival = (((ival) + W_BITS1m51) >> (W_BITS1m5));
ixval = ( deriv_lev[dsrc]*iw00 + deriv_lev[dsrc+2]*iw01 +
deriv_lev[dsrc+dstep]*iw10 + deriv_lev[dsrc+dstep+2]*iw11 );
ixval = (((ixval) + W_BITS41) >> (W_BITS4));
iyval = ( deriv_lev[dsrc+1]*iw00 + deriv_lev[dsrc+3]*iw01 + deriv_lev[dsrc+dstep+1]*iw10 +
deriv_lev[dsrc+dstep+3]*iw11 );
iyval = (((iyval) + W_BITS41) >> (W_BITS4));
iwin_buf[iptr] = ival;
deriv_iwin[diptr++] = ixval;
deriv_iwin[diptr++] = iyval;
A11 += ixval*ixval;
A12 += ixval*iyval;
A22 += iyval*iyval;
}
}
A11 *= FLT_SCALE; A12 *= FLT_SCALE; A22 *= FLT_SCALE;
D = A11*A22 - A12*A12;
min_eig = (A22 + A11 - Math.sqrt((A11-A22)*(A11-A22) + 4.0*A12*A12)) / win_area2;
if( min_eig < min_eigen_threshold || D < FLT_EPSILON )
{
if( level == 0 ) {
status[ptid] = 0;
}
continue;
}
D = 1.0/D;
next_x -= half_win;
next_y -= half_win;
prev_delta_x = 0.0;
prev_delta_y = 0.0;
for( iter = 0; iter < max_iter; ++iter ) {
inext_x = next_x|0;
inext_y = next_y|0;
x = (inext_x <= brd_tl)|(inext_x >= brd_r)|(inext_y <= brd_tl)|(inext_y >= brd_b);
if( x != 0 ) {
if( level == 0 ) {
status[ptid] = 0;
}
break;
}
a = next_x - inext_x;
b = next_y - inext_y;
iw00 = (((1.0 - a)*(1.0 - b)*W_BITS14_) + 0.5)|0;
iw01 = ((a*(1.0 - b)*W_BITS14_) + 0.5)|0;
iw10 = (((1.0 - a)*b*W_BITS14_) + 0.5)|0;
iw11 = (W_BITS14_ - iw00 - iw01 - iw10);
b1 = 0.0, b2 = 0.0;
for( y = 0; y < win_size; ++y ) {
jptr = ( (y + inext_y)*lw + inext_x )|0;
iptr = (y*win_size)|0;
diptr = iptr << 1;
for( x = 0 ; x < win_size; ++x, ++jptr, ++iptr ) {
ival = ( (img_next[jptr])*iw00 + (img_next[jptr+1])*iw01 +
(img_next[jptr+lw])*iw10 + (img_next[jptr+lw+1])*iw11 );
ival = (((ival) + W_BITS1m51) >> (W_BITS1m5));
ival = (ival - iwin_buf[iptr]);
b1 += ival * deriv_iwin[diptr++];
b2 += ival * deriv_iwin[diptr++];
}
}
b1 *= FLT_SCALE;
b2 *= FLT_SCALE;
delta_x = ((A12*b2 - A22*b1) * D);
delta_y = ((A12*b1 - A11*b2) * D);
next_x += delta_x;
next_y += delta_y;
curr_xy[i] = next_x + half_win;
curr_xy[j] = next_y + half_win;
if( delta_x*delta_x + delta_y*delta_y <= eps ) {
break;
}
if( iter > 0 && Math.abs(delta_x + prev_delta_x) < 0.01 &&
Math.abs(delta_y + prev_delta_y) < 0.01 ) {
curr_xy[i] -= delta_x*0.5;
curr_xy[j] -= delta_y*0.5;
break;
}
prev_delta_x = delta_x;
prev_delta_y = delta_y;
}
} // points loop
} // levels loop
jsfeat.cache.put_buffer(iwin_node);
jsfeat.cache.put_buffer(deriv_iwin_node);
jsfeat.cache.put_buffer(deriv_lev_node);
}
};
})();
global.optical_flow_lk = optical_flow_lk;
})(jsfeat);
/**
* @author Eugene Zatepyakin / http://inspirit.ru/
*
* this code is a rewrite from https://github.com/mtschirs/js-objectdetect implementation
* @author Martin Tschirsich / http://www.tu-darmstadt.de/~m_t
*/
(function(global) {
"use strict";
//
var haar = (function() {
var _group_func = function(r1, r2) {
var distance = (r1.width * 0.25 + 0.5)|0;
return r2.x <= r1.x + distance &&
r2.x >= r1.x - distance &&
r2.y <= r1.y + distance &&
r2.y >= r1.y - distance &&
r2.width <= (r1.width * 1.5 + 0.5)|0 &&
(r2.width * 1.5 + 0.5)|0 >= r1.width;
}
return {
edges_density: 0.07,
detect_single_scale: function(int_sum, int_sqsum, int_tilted, int_canny_sum, width, height, scale, classifier) {
var win_w = (classifier.size[0] * scale)|0,
win_h = (classifier.size[1] * scale)|0,
step_x = (0.5 * scale + 1.5)|0,
step_y = step_x;
var i,j,k,x,y,ex=(width-win_w)|0,ey=(height-win_h)|0;
var w1=(width+1)|0,edge_dens,mean,variance,std;
var inv_area = 1.0 / (win_w * win_h);
var stages,stage,trees,tree,sn,tn,fn,found=true,stage_thresh,stage_sum,tree_sum,feature,features;
var fi_a,fi_b,fi_c,fi_d,fw,fh;
var ii_a=0,ii_b=win_w,ii_c=win_h*w1,ii_d=ii_c+win_w;
var edges_thresh = ((win_w*win_h) * 0xff * this.edges_density)|0;
// if too much gradient we also can skip
//var edges_thresh_high = ((win_w*win_h) * 0xff * 0.3)|0;
var rects = [];
for(y = 0; y < ey; y += step_y) {
ii_a = y * w1;
for(x = 0; x < ex; x += step_x, ii_a += step_x) {
mean = int_sum[ii_a]
- int_sum[ii_a+ii_b]
- int_sum[ii_a+ii_c]
+ int_sum[ii_a+ii_d];
// canny prune
if(int_canny_sum) {
edge_dens = (int_canny_sum[ii_a]
- int_canny_sum[ii_a+ii_b]
- int_canny_sum[ii_a+ii_c]
+ int_canny_sum[ii_a+ii_d]);
if(edge_dens < edges_thresh || mean < 20) {
x += step_x, ii_a += step_x;
continue;
}
}
mean *= inv_area;
variance = (int_sqsum[ii_a]
- int_sqsum[ii_a+ii_b]
- int_sqsum[ii_a+ii_c]
+ int_sqsum[ii_a+ii_d]) * inv_area - mean * mean;
std = variance > 0. ? Math.sqrt(variance) : 1;
stages = classifier.complexClassifiers;
sn = stages.length;
found = true;
for(i = 0; i < sn; ++i) {
stage = stages[i];
stage_thresh = stage.threshold;
trees = stage.simpleClassifiers;
tn = trees.length;
stage_sum = 0;
for(j = 0; j < tn; ++j) {
tree = trees[j];
tree_sum = 0;
features = tree.features;
fn = features.length;
if(tree.tilted === 1) {
for(k=0; k < fn; ++k) {
feature = features[k];
fi_a = ~~(x + feature[0] * scale) + ~~(y + feature[1] * scale) * w1;
fw = ~~(feature[2] * scale);
fh = ~~(feature[3] * scale);
fi_b = fw * w1;
fi_c = fh * w1;
tree_sum += (int_tilted[fi_a]
- int_tilted[fi_a + fw + fi_b]
- int_tilted[fi_a - fh + fi_c]
+ int_tilted[fi_a + fw - fh + fi_b + fi_c]) * feature[4];
}
} else {
for(k=0; k < fn; ++k) {
feature = features[k];
fi_a = ~~(x + feature[0] * scale) + ~~(y + feature[1] * scale) * w1;
fw = ~~(feature[2] * scale);
fh = ~~(feature[3] * scale);
fi_c = fh * w1;
tree_sum += (int_sum[fi_a]
- int_sum[fi_a+fw]
- int_sum[fi_a+fi_c]
+ int_sum[fi_a+fi_c+fw]) * feature[4];
}
}
stage_sum += (tree_sum * inv_area < tree.threshold * std) ? tree.left_val : tree.right_val;
}
if (stage_sum < stage_thresh) {
found = false;
break;
}
}
if(found) {
rects.push({"x" : x,
"y" : y,
"width" : win_w,
"height" : win_h,
"neighbor" : 1,
"confidence" : stage_sum});
x += step_x, ii_a += step_x;
}
}
}
return rects;
},
detect_multi_scale: function(int_sum, int_sqsum, int_tilted, int_canny_sum, width, height, classifier, scale_factor, scale_min) {
if (typeof scale_factor === "undefined") { scale_factor = 1.2; }
if (typeof scale_min === "undefined") { scale_min = 1.0; }
var win_w = classifier.size[0];
var win_h = classifier.size[1];
var rects = [];
while (scale_min * win_w < width && scale_min * win_h < height) {
rects = rects.concat(this.detect_single_scale(int_sum, int_sqsum, int_tilted, int_canny_sum, width, height, scale_min, classifier));
scale_min *= scale_factor;
}
return rects;
},
// OpenCV method to group detected rectangles
group_rectangles: function(rects, min_neighbors) {
if (typeof min_neighbors === "undefined") { min_neighbors = 1; }
var i, j, n = rects.length;
var node = [];
for (i = 0; i < n; ++i) {
node[i] = {"parent" : -1,
"element" : rects[i],
"rank" : 0};
}
for (i = 0; i < n; ++i) {
if (!node[i].element)
continue;
var root = i;
while (node[root].parent != -1)
root = node[root].parent;
for (j = 0; j < n; ++j) {
if( i != j && node[j].element && _group_func(node[i].element, node[j].element)) {
var root2 = j;
while (node[root2].parent != -1)
root2 = node[root2].parent;
if(root2 != root) {
if(node[root].rank > node[root2].rank)
node[root2].parent = root;
else {
node[root].parent = root2;
if (node[root].rank == node[root2].rank)
node[root2].rank++;
root = root2;
}
/* compress path from node2 to the root: */
var temp, node2 = j;
while (node[node2].parent != -1) {
temp = node2;
node2 = node[node2].parent;
node[temp].parent = root;
}
/* compress path from node to the root: */
node2 = i;
while (node[node2].parent != -1) {
temp = node2;
node2 = node[node2].parent;
node[temp].parent = root;
}
}
}
}
}
var idx_seq = [];
var class_idx = 0;
for(i = 0; i < n; i++) {
j = -1;
var node1 = i;
if(node[node1].element) {
while (node[node1].parent != -1)
node1 = node[node1].parent;
if(node[node1].rank >= 0)
node[node1].rank = ~class_idx++;
j = ~node[node1].rank;
}
idx_seq[i] = j;
}
var comps = [];
for (i = 0; i < class_idx+1; ++i) {
comps[i] = {"neighbors" : 0,
"x" : 0,
"y" : 0,
"width" : 0,
"height" : 0,
"confidence" : 0};
}
// count number of neighbors
for(i = 0; i < n; ++i) {
var r1 = rects[i];
var idx = idx_seq[i];
if (comps[idx].neighbors == 0)
comps[idx].confidence = r1.confidence;
++comps[idx].neighbors;
comps[idx].x += r1.x;
comps[idx].y += r1.y;
comps[idx].width += r1.width;
comps[idx].height += r1.height;
comps[idx].confidence = Math.max(comps[idx].confidence, r1.confidence);
}
var seq2 = [];
// calculate average bounding box
for(i = 0; i < class_idx; ++i) {
n = comps[i].neighbors;
if (n >= min_neighbors)
seq2.push({"x" : (comps[i].x * 2 + n) / (2 * n),
"y" : (comps[i].y * 2 + n) / (2 * n),
"width" : (comps[i].width * 2 + n) / (2 * n),
"height" : (comps[i].height * 2 + n) / (2 * n),
"neighbors" : comps[i].neighbors,
"confidence" : comps[i].confidence});
}
var result_seq = [];
n = seq2.length;
// filter out small face rectangles inside large face rectangles
for(i = 0; i < n; ++i) {
var r1 = seq2[i];
var flag = true;
for(j = 0; j < n; ++j) {
var r2 = seq2[j];
var distance = (r2.width * 0.25 + 0.5)|0;
if(i != j &&
r1.x >= r2.x - distance &&
r1.y >= r2.y - distance &&
r1.x + r1.width <= r2.x + r2.width + distance &&
r1.y + r1.height <= r2.y + r2.height + distance &&
(r2.neighbors > Math.max(3, r1.neighbors) || r1.neighbors < 3)) {
flag = false;
break;
}
}
if(flag)
result_seq.push(r1);
}
return result_seq;
}
};
})();
global.haar = haar;
})(jsfeat);
/**
* BBF: Brightness Binary Feature
*
* @author Eugene Zatepyakin / http://inspirit.ru/
*
* this code is a rewrite from https://github.com/liuliu/ccv implementation
* @author Liu Liu / http://liuliu.me/
*
* The original paper refers to: YEF? Real-Time Object Detection, Yotam Abramson and Bruno Steux
*/
(function(global) {
"use strict";
//
var bbf = (function() {
var _group_func = function(r1, r2) {
var distance = (r1.width * 0.25 + 0.5)|0;
return r2.x <= r1.x + distance &&
r2.x >= r1.x - distance &&
r2.y <= r1.y + distance &&
r2.y >= r1.y - distance &&
r2.width <= (r1.width * 1.5 + 0.5)|0 &&
(r2.width * 1.5 + 0.5)|0 >= r1.width;
}
var img_pyr = new jsfeat.pyramid_t(1);
return {
interval: 4,
scale: 1.1486,
next: 5,
scale_to: 1,
// make features local copy
// to avoid array allocation with each scale
// this is strange but array works faster than Int32 version???
prepare_cascade: function(cascade) {
var sn = cascade.stage_classifier.length;
for (var j = 0; j < sn; j++) {
var orig_feature = cascade.stage_classifier[j].feature;
var f_cnt = cascade.stage_classifier[j].count;
var feature = cascade.stage_classifier[j]._feature = new Array(f_cnt);
for (var k = 0; k < f_cnt; k++) {
feature[k] = {"size" : orig_feature[k].size,
"px" : new Array(orig_feature[k].size),
"pz" : new Array(orig_feature[k].size),
"nx" : new Array(orig_feature[k].size),
"nz" : new Array(orig_feature[k].size)};
}
}
},
build_pyramid: function(src, min_width, min_height, interval) {
if (typeof interval === "undefined") { interval = 4; }
var sw=src.cols,sh=src.rows;
var i=0,nw=0,nh=0;
var new_pyr=false;
var src0=src,src1=src;
var data_type = jsfeat.U8_t | jsfeat.C1_t;
this.interval = interval;
this.scale = Math.pow(2, 1 / (this.interval + 1));
this.next = (this.interval + 1)|0;
this.scale_to = (Math.log(Math.min(sw / min_width, sh / min_height)) / Math.log(this.scale))|0;
var pyr_l = ((this.scale_to + this.next * 2) * 4) | 0;
if(img_pyr.levels != pyr_l) {
img_pyr.levels = pyr_l;
img_pyr.data = new Array(pyr_l);
new_pyr = true;
img_pyr.data[0] = src; // first is src
}
for (i = 1; i <= this.interval; ++i) {
nw = (sw / Math.pow(this.scale, i))|0;
nh = (sh / Math.pow(this.scale, i))|0;
src0 = img_pyr.data[i<<2];
if(new_pyr || nw != src0.cols || nh != src0.rows) {
img_pyr.data[i<<2] = new jsfeat.matrix_t(nw, nh, data_type);
src0 = img_pyr.data[i<<2];
}
jsfeat.imgproc.resample(src, src0, nw, nh);
}
for (i = this.next; i < this.scale_to + this.next * 2; ++i) {
src1 = img_pyr.data[(i << 2) - (this.next << 2)];
src0 = img_pyr.data[i<<2];
nw = src1.cols >> 1;
nh = src1.rows >> 1;
if(new_pyr || nw != src0.cols || nh != src0.rows) {
img_pyr.data[i<<2] = new jsfeat.matrix_t(nw, nh, data_type);
src0 = img_pyr.data[i<<2];
}
jsfeat.imgproc.pyrdown(src1, src0);
}
for (i = this.next * 2; i < this.scale_to + this.next * 2; ++i) {
src1 = img_pyr.data[(i << 2) - (this.next << 2)];
nw = src1.cols >> 1;
nh = src1.rows >> 1;
src0 = img_pyr.data[(i<<2)+1];
if(new_pyr || nw != src0.cols || nh != src0.rows) {
img_pyr.data[(i<<2)+1] = new jsfeat.matrix_t(nw, nh, data_type);
src0 = img_pyr.data[(i<<2)+1];
}
jsfeat.imgproc.pyrdown(src1, src0, 1, 0);
//
src0 = img_pyr.data[(i<<2)+2];
if(new_pyr || nw != src0.cols || nh != src0.rows) {
img_pyr.data[(i<<2)+2] = new jsfeat.matrix_t(nw, nh, data_type);
src0 = img_pyr.data[(i<<2)+2];
}
jsfeat.imgproc.pyrdown(src1, src0, 0, 1);
//
src0 = img_pyr.data[(i<<2)+3];
if(new_pyr || nw != src0.cols || nh != src0.rows) {
img_pyr.data[(i<<2)+3] = new jsfeat.matrix_t(nw, nh, data_type);
src0 = img_pyr.data[(i<<2)+3];
}
jsfeat.imgproc.pyrdown(src1, src0, 1, 1);
}
return img_pyr;
},
detect: function(pyramid, cascade) {
var interval = this.interval;
var scale = this.scale;
var next = this.next;
var scale_upto = this.scale_to;
var i=0,j=0,k=0,n=0,x=0,y=0,q=0,sn=0,f_cnt=0,q_cnt=0,p=0,pmin=0,nmax=0,f=0,i4=0,qw=0,qh=0;
var sum=0.0, alpha, feature, orig_feature, feature_k, feature_o, flag = true, shortcut=true;
var scale_x = 1.0, scale_y = 1.0;
var dx = [0, 1, 0, 1];
var dy = [0, 0, 1, 1];
var seq = [];
var pyr=pyramid.data, bpp = 1, bpp2 = 2, bpp4 = 4;
var u8 = [], u8o = [0,0,0];
var step = [0,0,0];
var paddings = [0,0,0];
for (i = 0; i < scale_upto; i++) {
i4 = (i<<2);
qw = pyr[i4 + (next << 3)].cols - (cascade.width >> 2);
qh = pyr[i4 + (next << 3)].rows - (cascade.height >> 2);
step[0] = pyr[i4].cols * bpp;
step[1] = pyr[i4 + (next << 2)].cols * bpp;
step[2] = pyr[i4 + (next << 3)].cols * bpp;
paddings[0] = (pyr[i4].cols * bpp4) - (qw * bpp4);
paddings[1] = (pyr[i4 + (next << 2)].cols * bpp2) - (qw * bpp2);
paddings[2] = (pyr[i4 + (next << 3)].cols * bpp) - (qw * bpp);
sn = cascade.stage_classifier.length;
for (j = 0; j < sn; j++) {
orig_feature = cascade.stage_classifier[j].feature;
feature = cascade.stage_classifier[j]._feature;
f_cnt = cascade.stage_classifier[j].count;
for (k = 0; k < f_cnt; k++) {
feature_k = feature[k];
feature_o = orig_feature[k];
q_cnt = feature_o.size|0;
for (q = 0; q < q_cnt; q++) {
feature_k.px[q] = (feature_o.px[q] * bpp) + feature_o.py[q] * step[feature_o.pz[q]];
feature_k.pz[q] = feature_o.pz[q];
feature_k.nx[q] = (feature_o.nx[q] * bpp) + feature_o.ny[q] * step[feature_o.nz[q]];
feature_k.nz[q] = feature_o.nz[q];
}
}
}
u8[0] = pyr[i4].data; u8[1] = pyr[i4 + (next<<2)].data;
for (q = 0; q < 4; q++) {
u8[2] = pyr[i4 + (next<<3) + q].data;
u8o[0] = (dx[q]*bpp2) + dy[q] * (pyr[i4].cols*bpp2);
u8o[1] = (dx[q]*bpp) + dy[q] * (pyr[i4 + (next<<2)].cols*bpp);
u8o[2] = 0;
for (y = 0; y < qh; y++) {
for (x = 0; x < qw; x++) {
sum = 0;
flag = true;
sn = cascade.stage_classifier.length;
for (j = 0; j < sn; j++) {
sum = 0;
alpha = cascade.stage_classifier[j].alpha;
feature = cascade.stage_classifier[j]._feature;
f_cnt = cascade.stage_classifier[j].count;
for (k = 0; k < f_cnt; k++) {
feature_k = feature[k];
pmin = u8[feature_k.pz[0]][u8o[feature_k.pz[0]] + feature_k.px[0]];
nmax = u8[feature_k.nz[0]][u8o[feature_k.nz[0]] + feature_k.nx[0]];
if (pmin <= nmax) {
sum += alpha[k << 1];
} else {
shortcut = true;
q_cnt = feature_k.size;
for (f = 1; f < q_cnt; f++) {
if (feature_k.pz[f] >= 0) {
p = u8[feature_k.pz[f]][u8o[feature_k.pz[f]] + feature_k.px[f]];
if (p < pmin) {
if (p <= nmax) {
shortcut = false;
break;
}
pmin = p;
}
}
if (feature_k.nz[f] >= 0) {
n = u8[feature_k.nz[f]][u8o[feature_k.nz[f]] + feature_k.nx[f]];
if (n > nmax) {
if (pmin <= n) {
shortcut = false;
break;
}
nmax = n;
}
}
}
sum += (shortcut) ? alpha[(k << 1) + 1] : alpha[k << 1];
}
}
if (sum < cascade.stage_classifier[j].threshold) {
flag = false;
break;
}
}
if (flag) {
seq.push({"x" : (x * 4 + dx[q] * 2) * scale_x,
"y" : (y * 4 + dy[q] * 2) * scale_y,
"width" : cascade.width * scale_x,
"height" : cascade.height * scale_y,
"neighbor" : 1,
"confidence" : sum});
++x;
u8o[0] += bpp4;
u8o[1] += bpp2;
u8o[2] += bpp;
}
u8o[0] += bpp4;
u8o[1] += bpp2;
u8o[2] += bpp;
}
u8o[0] += paddings[0];
u8o[1] += paddings[1];
u8o[2] += paddings[2];
}
}
scale_x *= scale;
scale_y *= scale;
}
return seq;
},
// OpenCV method to group detected rectangles
group_rectangles: function(rects, min_neighbors) {
if (typeof min_neighbors === "undefined") { min_neighbors = 1; }
var i, j, n = rects.length;
var node = [];
for (i = 0; i < n; ++i) {
node[i] = {"parent" : -1,
"element" : rects[i],
"rank" : 0};
}
for (i = 0; i < n; ++i) {
if (!node[i].element)
continue;
var root = i;
while (node[root].parent != -1)
root = node[root].parent;
for (j = 0; j < n; ++j) {
if( i != j && node[j].element && _group_func(node[i].element, node[j].element)) {
var root2 = j;
while (node[root2].parent != -1)
root2 = node[root2].parent;
if(root2 != root) {
if(node[root].rank > node[root2].rank)
node[root2].parent = root;
else {
node[root].parent = root2;
if (node[root].rank == node[root2].rank)
node[root2].rank++;
root = root2;
}
/* compress path from node2 to the root: */
var temp, node2 = j;
while (node[node2].parent != -1) {
temp = node2;
node2 = node[node2].parent;
node[temp].parent = root;
}
/* compress path from node to the root: */
node2 = i;
while (node[node2].parent != -1) {
temp = node2;
node2 = node[node2].parent;
node[temp].parent = root;
}
}
}
}
}
var idx_seq = [];
var class_idx = 0;
for(i = 0; i < n; i++) {
j = -1;
var node1 = i;
if(node[node1].element) {
while (node[node1].parent != -1)
node1 = node[node1].parent;
if(node[node1].rank >= 0)
node[node1].rank = ~class_idx++;
j = ~node[node1].rank;
}
idx_seq[i] = j;
}
var comps = [];
for (i = 0; i < class_idx+1; ++i) {
comps[i] = {"neighbors" : 0,
"x" : 0,
"y" : 0,
"width" : 0,
"height" : 0,
"confidence" : 0};
}
// count number of neighbors
for(i = 0; i < n; ++i) {
var r1 = rects[i];
var idx = idx_seq[i];
if (comps[idx].neighbors == 0)
comps[idx].confidence = r1.confidence;
++comps[idx].neighbors;
comps[idx].x += r1.x;
comps[idx].y += r1.y;
comps[idx].width += r1.width;
comps[idx].height += r1.height;
comps[idx].confidence = Math.max(comps[idx].confidence, r1.confidence);
}
var seq2 = [];
// calculate average bounding box
for(i = 0; i < class_idx; ++i) {
n = comps[i].neighbors;
if (n >= min_neighbors)
seq2.push({"x" : (comps[i].x * 2 + n) / (2 * n),
"y" : (comps[i].y * 2 + n) / (2 * n),
"width" : (comps[i].width * 2 + n) / (2 * n),
"height" : (comps[i].height * 2 + n) / (2 * n),
"neighbors" : comps[i].neighbors,
"confidence" : comps[i].confidence});
}
var result_seq = [];
n = seq2.length;
// filter out small face rectangles inside large face rectangles
for(i = 0; i < n; ++i) {
var r1 = seq2[i];
var flag = true;
for(j = 0; j < n; ++j) {
var r2 = seq2[j];
var distance = (r2.width * 0.25 + 0.5)|0;
if(i != j &&
r1.x >= r2.x - distance &&
r1.y >= r2.y - distance &&
r1.x + r1.width <= r2.x + r2.width + distance &&
r1.y + r1.height <= r2.y + r2.height + distance &&
(r2.neighbors > Math.max(3, r1.neighbors) || r1.neighbors < 3)) {
flag = false;
break;
}
}
if(flag)
result_seq.push(r1);
}
return result_seq;
}
};
})();
global.bbf = bbf;
})(jsfeat);
/**
* @author Eugene Zatepyakin / http://inspirit.ru/
*/
(function(lib) {
"use strict";
if (typeof module === "undefined" || typeof module.exports === "undefined") {
// in a browser, define its namespaces in global
window.jsfeat = lib;
} else {
// in commonjs, or when AMD wrapping has been applied, define its namespaces as exports
module.exports = lib;
}
})(jsfeat);
|